MAINVIEW® AutoOPERATOR ™

Advanced Automation Guide
for REXX EXECs

Version 6.2

March 15, 2002

<bmesoftware

Copyright © 2002 BMC Software, Inc., as an unpublished work. All rights reserved.

BMC Software, the BMC Software logos, and all other BMC Software product or service names are registered trademarks
or trademarks of BMC Software, Inc. IBM and DB2 are registered trademarks of International Business Machines Corp. All
other registered trademarks or trademarks belong to their respective companies.

THE USE AND CONTENTS OF THIS DOCUMENTATION ARE GOVERNED BY THE SOFTWARE LICENSE
AGREEMENT ENCLOSED AT THE BACK OF THIS DOCUMENTATION.

Restricted Rights Legend

U.S. GOVERNMENT RESTRICTED RIGHTS. UNPUBLISHED-RIGHTS RESERVED UNDER THE COPYRIGHT
LAWS OF THE UNITED STATES. Use, duplication, or disclosure by the U.S. Government is subject to restrictions set
forth in FAR Section 52.227-14 Alt. 11l (g)(3), FAR Section 52.227-19, DFARS 252.227-7014 (b), or DFARS 227.7202, as
amended from time to time. Send any contract notices to Contractor/Manufacturer:

BMC Software, Inc.

2101 CityWest Blvd.
Houston TX 77042-2827
USA

Contacting BMC Software

You can access the BMC Software Web siteti://www.bmc.com. From this Web site, you can obtain general
information about the company, its products, special events, and career opportunities. For a complete list of all BMC
Software offices and locations, gohttp://www.bmc.com/corporate/offices.html

USA and Canada Outside USA and Canada
Address BMC Software, Inc. Telephone (01) 713 918 8800
2101 CityWest Blvd.
Houston TX 77042-2827 Fax (01) 713 918 8000

Telephone 713 918 8800 or
800 841 2031

Fax 713 918 8000

http://www.bmc.com/corporate/offices.html
http://www.bmc.com

Customer Support

You can obtain technical support by using the Support page on the BMC Software Web site or by contacting Customer
Support by telephone or e-mail. To expedite your inquiry, please see “Before Contacting BMC Software,” below.

Support Web Site

You can obtain technical support from BMC Software 24 hours a day, seven days a week by accessing the technical support
Web site ahttp://www.bmc.com/support.html. From this site, you can

¢ read overviews about support services and programs that BMC Software offers

« find the most current information about BMC Software products

e search a database for problems similar to yours and possible solutions

e order or download product documentation

e report a problem or ask a question

e subscribe to receive e-mail notices when new product versions are released

« find worldwide BMC Software support center locations and contact information, including e-mail addresses, fax
numbers, and telephone numbers

Support via Telephone or E-mail

In the USA and Canada, if you need technical support and do not have access to the Web, call 800 537 1813. Outside the
USA and Canada, please contact your local support center for assistance. To find telephone and e-mail contact information
for the BMC Software support center that services your location, refer to the Contact Customer Support section of the
Support page on the BMC Software Web sitenatv.bmc.com/support.html

Before Contacting BMC Software

Before you contact BMC Software, have the following information available so that a technical support analyst can begin
working on your problem immediately:

e product information

— product name
— product version (release number)
— license number and password (trial or permanent)

e operating-system and environment information

— machine type

— operating system type, version, and service pack or program temporary fix (PTF)

— system hardware configuration

— serial numbers

— related software (database, application, and communication) including type, version, and service pack or PTF

¢ sequence of events leading to the problem
< commands and options that you used
¢ messages received (and the time and date that you received them)

— product error messages
— messages from the operating system, sudieasystem full
— messages from related software

http://www.bmc.com/support.html

iv MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Contents

Chapter 1. Introduction to Using AutoOPERATOR and EXECs to Automate Your

ENVIrONmMeNt. . . . e 1
OVBIVIBW . . o e 1
Choosing the EXEC Language: REXX or CLIST 3
Invoking AUtOOPERATOR EXECS e e e e e 4
Passing Information to REXX EXECS. oot e 6
Controlling EXEC EXECULION. e 9.....
Using Variables in AUtOOPERATOR EXECS i e 10
Chapter 2. Using REXX Conventions and Syntax in AutoOPERATOR

REXX EXECS . o ittt e e e e e 13
Using Expressions and Operators in REXX EXECS 13
Using Control Statements in REXX EXECS i 14
Using Assignment Statements IN REXXEXECS. 14
Using Conditional Statements In REXX EXECS. i 15
Using Built-In Functions in REXX EXECS i 16
Using TSO/E Functions for REXX EXECS.o e 19
Using TSO/E REXX Commands in REXXEXECS 20
Restrictions INn REXX EXECS e 21
Chapter 3. Passing Parameters to REXX EXECs in AutoOPERATOR 23
Understanding the Four Components of a REXXEXEC. 23

Definingthe Language e e 24
Passing Datac i 24. ..
Documenting REXX EXECS i e e e 27
Writing the LOgic SeCtion 28
Describing AUtOOPERATOR REXX EXECS oo e 28
Rule-Initiated REXX EXECSo e e 29
Potential Use 29. ...
Parameters Passedtothe EXEC 29
Example. 30..
Describing the Example 30
ALERT-Initiated REXX EXECSot e e e 31
Potential Use e, 31....
Parameters Passedtothe EXEC 31
Example 1: ALERT-Initiated EXEC without Optional Parameters. 33
Describing the Example 34
Example 2: ALERT-Initiated EXEC with Optional Parameters 34
Describing the Example 35
User-Initiated REXX EXECS e 36
Potential Use e, 36. ...
Parameters Passedtothe EXEC 36
EXample 36. ..
Describing the Example e 37
Time-Initiated REXX EXECSo 38
Potential Use e, 38....
Parameters Passedtothe EXEC 38
EXample 40. . .
Describing the Example e 41
EXEC-Initiated REXX EXECSottt e e e e e 42
Potential Use e, 42. . ..

Contents \

Vi

Parameters Passed tothe EXEC 42

EXample .. 42 ..
Describing the Example 43
Externally Initiated REXX EXECSttt e 44
Potential Use a4 . ..
Parameters Passed tothe EXEC 44
EXample .., 45 ..
Describing the Example 45
End-of-Memory—Initiated REXX EXEC e 46
Potential Use 46 . ..
Parameters Passed tothe EXEC 46
EXample ., 47 ..
Chapter 4. Using Variables in REXX EXECS.o 49
OVEIVIEW . o o ot e e 49
Usinga TSO Variable Pool 53
TSO Variables Supplied by AutoOPERATOR. e 54
TSO Modifiable Control Variables. 61
TSO Non-Modifiable Control Variables. 61
Using LOCAL Variables and PoOIs. 61
Using SHARED Variables and POOIS e 63
Serializing Variables. 3....6
AutoOPERATOR-Supplied SHARED Variables., 64
Using the PROFILE POOI e 6....6
Serializing Variables. 6....6
Saving Dataina Variable Pool e 6
Potential Use. 67 ..
Describing the Example 67
EXample ., 68 ..
Retrieving Data from a Variable Pool 69
Potential Use. 69 . .
Describing the Example 69
EXample ., 69 ..
Sharing Variables while Multi-Threading EXECs i 70
Potential Use. 70 ..
Describing the Example 70
EXample ., 70..
Rule-Initiated EXECs Initiated by MVS Multi-Line or Multi-Segment Messages 71
Potential Use. 71 ..
Describing the Example 71
EXample ., 71..
Chapter 5. Controlling EXEC EXECULION it 73
Scheduling EXECSot 73 ...
Defining Threads e 73
Scheduling EXECstothe Normal Queuet 73
Scheduling EXECs to the Priority QUEeUEe e 74
Multi-Threading EXECs to the Normal or Priority Queue 75
Invoking EXECs Synchronously with IMFEXEC SELECT(EXEC) WAIT(YES) 78
Implementing an EXEC. 79....
Controlling EXEC EXECULION oottt e e e 80
Setting Time and CPU Limits for EXECS oottt 80
Displaying EXEC EXeCution Status.ottt 81
Cancelling, Stopping, and Starting EXEC Execution 81

MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Analyzing EXEC Performance Using the EXEC Management Application. 82

Using the SORT Command in the EXEC-Management Application. 83
Writing EXECs that Display CPU Consumption.ttt iiee e 84
Chapter 6. Using Advanced Techniques with AutoOPERATOR EXECs 87
OV BV W . . .t e 87
Scheduling Messages and EXECs Across BBI-SSPASS. 88

EXamples. .. 89. ..
Determining the Origin of a Command or EXEC i 91

Example - Determining the Origin of a User-Initiated EXEC 92
Invoking REXX EXECs from Outside of AutoOPERATOR with IMFSUBEX 93

Determining Return Codes from IMFSUBEX i 95

Submission fromaJob Step 96

Submission from a TSO SESSION.ttt 98

Submission from within Another Program 98
Testing EXECSo 99.

Testing EXECs with IMFEXEC CNTL NOCMD Statements 100

Testing EXEC with REXX Statement TRACER. 101

Testing EXECs with SHARED Variables 102

Testing EXECs without ISSuing WTOS e 103
REXX EXEC CoONSIerationS.o vttt e e e e e e e e e 103
Minimizing EXEC Processing Timet e 104

Using VLF to Improve Performance. e 105
Chapter 7. Accessing DB2 from AutoOPERATOR. 107
Access DB2 from REXX EXECs with RXD2/LINK o 107
RxD2/LINK Common Functions for REXX EXECS 108
RxD2/LINK Special Functions for REXX EXECS it 110
Chapter 8. Interacting with VTAM-Applications with OSPI 113
OV IV W . . oot e e 113
Whento Use OSPI e 114. ..
How to Use OSPI e 114..
Customization Required to Use OSPI e i 114
OSSPl SESSIONS . . .t e 115.

Establishing @ Session 115

Exchanging Data 115

Terminating @ SeSSIONot 115
OSPI Scripting Application 16...1

Accessing the OSPI Scripting Application 116

OSPI Script Development Panel 117

Interacting with the Application 119

Receive Complete Detection. 121

Retrieving Screen Data into Variables. 122

Application Termination 123
Customizing OSPI EXECS e 124

OSPI Control Variables 124

Disconnect/Reconnect Feature 125

Establishing Multiple SeSSIONS 125

Using Passwords in OSPIEXECS. e 125
OSPI Debugging Facilities. e 26....1

Return Codes.o 126. ...

Error MeSsages 26....1

OSPI Control Variables 126

Contents Vii

OSSP SNA P 126

OSPI Session Termination Panel 127
Chapter 9. Performing Automation Using AOAnywhere. 129
OVEIVIEW . o o ot e e e 129

SYSPIEX SUPPOIT . . o 0....13
Why Use ADANYWNEIE oo e 130
Installation Requirements 130. ...
APl Implementation under REXX and CLIST e 131

Differences between IMFEXEC and AOEXEC Parameter Syntax 131
Implementing the AOAnywhere Batch Interface: AOSUBX 133

Why Use ADSUBX . .. 133
AOEXEC COmMMANS . . . oottt e 135
General Coding CONVENLIONS.ottt 136

Using Variable Names 136

Reading Return Codest e 136

Understanding Command Statement Syntax 136
AOEXEC ALERT . ..o 37...1

Return Codes for FUNCTION Keywords 146

TSO Variables Returned from the READQ Parameter 152

TSO Variables Returned from COUNT e 154

TSO Variables Returned from LISTQt e 154
AOCEXEC MSG . . . 161..
AOEXEC NOTIRY .. e e e e 3...16
AOEXEC SELECT 5...16
AOEXEC SYSINFO . .. 167
AOEXEC VDEL 171. ..
AOEXEC VGET . .. 174. ..
AOEXEC VLST .. 176. ..
AOEXEC VPUT . .o e 179. ..
AOEXEC VDELL. . ..o e 1..18
AOEXEC VGETL 3...18
AOEXEC VLSTL .ot e e 85..1
AOEXEC VPUT Lo e e e e e 7...18
Chapter 10. Accessing Array Data with AutoOPERATOR EXECs. 189
OVEIVIEW . o o ot e 189

When Are Arrays Useful 189
IMFEXEC ARRAY COMMANAS oottt e e e e e 191
General Coding CONVENLIONS.ottt 192

Using Variable Names 192

Reading Condition Codes. 192
ARRAY CONNECT . .. e e e 193
ARRAY CREATE 95...1
ARRAY DELETE 97...1
ARRAY DISC . . . 198.
ARRAY FIND . . . 200 .
ARRAY GET . . . 202.
ARRAY INFO . . . 203. .
ARRAY INSERT 205. ..
ARRAY LIST . e 206
ARRAY PUT . e 207.
ARRAY SAVE. . . 208. .
ARRAY SET . . e, 209.

Vili MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

ARRAY SETVIEW . . 0...21

ARRAY SORT . .. 212 .
Chapter 11. Using the MAINVIEW API e 215
OV IV W . . . e e e 215
What Is the MAINVIEW AP, e e e e 215
Customize MAINVIEW Views and Connect BBI-SS PAStoa CAS. 215
Using the IMFEXEC MAINVIEW Commandst 217
General Coding CONVENLIONSttt e e 220
Using Variable Names. e 220
Reading Condition Codesottt 220
MAINVIEW CONNECT e 221
MAINVIEW CONTEXT ... e e e 223
MAINVIEW GET DAT A . . e e e 225
MAINVIEW RELEASE e 227
MAINVIEW TRACE e e e e e e e 228
MAINVIEW VIEW . . . e e 230
Sample Program 232..
Chapter 12. Using the IMFEXEC Statements 237
General Coding CONVENLIONSttt e e 239
REXX COUING ..ot 239
Using Quotation Marks 239
Using Variable Names 239
Reading Condition Codest 240
ALERT e 241
FUNCTION KeYWOIAS . ..ottt e e e 249
TSO Variables Returned from the READQ Parameter 251
TSO Variables Returned from COUNT e 252
TSO Variables Returned from LISTQ e 252
BRP T o i 259
CHAP L 260
ClCS . . 261
Condition COOESot 261
CICS Command Parameters.t e 263
CICS ACQUIRE. . . .ot e e e e 265 ..
CICS ALLOC . . o 266
CICS ALTER . .. 267
CICS ALTERVS . . o 273
CICS CEMT . 4...27
CICS CHAP . 5...27
CICS CICSKEY . .t e e 276
CICS CLOSE . . e 277
CICS CONN . . e e 8...27
CICS DISABLE 279
CICS DROP. . . 8l....2
CICS DUMPDBo 282
CICS ENABLE 283
CICS FREE 85....2
CICS INSERVE e e 286
CICS ISOLATE. . . ottt e e 287
CICS KILL . .t 288. ..
CICS LOAD . .t e 1...29
CICS NEW COPY . .o e e e e 292

Contents X

X

CICS OPEN . .o e 3...29
CICS OUTSERVE e 294
CICS PURGE. . . . 295
CICS QUERY . . . o 297
CICSRECOVERDB e e 299
CICS RELEASE. . . . o e e 300
CICS SPURGE. 301
CICS START DB. . . .o e 302
CICS STOPDB. . . ot 303
CICSTRAN . 304
CMD . L e 305
CMD (Issue BBI Command without Response) 306
CMD (Issue BBI Command with Response) 307
CMD (MVS Version with Response through X-MCS Consoles) 310
CMD (Issue IMS Command without Response) 315
CMD (Issue IMS Command with Response) 317
CN T L. o e 321
DOM L i 323
EXIT e 324
HB . 325
IMEC . e 326
IMFC SET PRG=CALLX|ALL . .. o 329
IMFC SET REQ=CALLX. . . . o e e e 331
IMSTRAN . . 333
JES3BCMD . ..t 334
JESALLOC . . 335
JESSUBM . . 336
LOGOFRF . . 338
LOGON . . 339
M S G, .t 341
NOTIFY . 342
POST . o 343
RECEIVE . . . 345
RES . o s 346
SCAN. L 348
USING Parameters 349
SELECT . .ot 351
Using Other Programming Languagesttt 353
Understanding Completion Codes for EXEC-Initiated EXECs with WAIT(YES)
and User Written Programs e 354
SENDD . . . 355
SESSINF . e 357
SET T G T oo e 358
SHARE . . o e, 359
STDTIME . . 361
SUBMIT . e 362
TAILOR . 363
Condition COOESot 365
IMFEXEC TAILOR ProCessiNg. . . .« o vttt e it e e 366
Variable SUbSHtUtION 367
Examples of Variable Substitution. 368
TRANSMIT . 375.
TY PE . . 377
VCK P, L 379

MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

I 382

VDELL. .. e 385

VDEQ . . oottt 387

VENQ . .o i 388

VGET .o i 390

VGET L. .ot e 393

T 394

VST et 396

VPUT L 398

VPUT L . . e 401

AT 403

L I T 404

WO . e 406

W OR . 409

Chapter 13. Testing and Debugging EXECs Interactively. 411

INtrOdUCHIONo i 411
Why Use AUtOOPERATOR EXECSttt e 411
What AUtOOPERATOR EXECS Are. . . .ottt e e e e e e 411
What the EXEC Testing Facility Provides 412

OVEIVIEW . o ot 413
What Breakpoints Areo 413
Division of Breakpoints 413
How to Use Variables 415
Using the EXEC Testing Facility with OSPIEXECSs 415
How to Use the IMFEXEC BKPT Statement. 416
How to Trace the Execution of the EXEC 416
What to Set Up Before Using the EXEC Testing Facility 416

Accessing the EXEC Testing Facility i 417
Displaying Interpreted Source Statements 421
Tracing Interpreted Source Statements 423
Setting Conditional Breakpoints i 424
Displaying Variables 426
Creating and Modifying Variables 428
Testing OSPI SESSIONSo 430

Chapter 14. Using the AutoOPERATOR-Supplied Utility EXECs. 431

Distributed Utility EXECSo 431. ..
SYSPROG Utility EXECS.ottt e e e e 432

How to Resolve Compound SYSPROG Variables. 433
@STATASK: Start Taskso e e 434
CANEXEC: Cancel Delvars e 434
DELVARS: Delete Variables 435
MUTOOLC: Issue $E, $P, and $C Commandsttt it 436
SUBMIT: Find Subsystem Handling Job Submissions 436
SUBMITOR: Submit Jobs on the Target Subsystem 437
RASM: Auxiliary Storage Manager Information 437
RCPU: CPU Usage Informationo 439
RCSS: Common Storage Usage Information 441
RENQ: SYSPROG ENQUEUE Commandt 442
RIO: System Input/Output Information 443
RMDE: Device MONItOrNGottt e e e e e 444
RMON: Address Space MONItOringt 445

Contents Xi

Xil

RMPA: Channel Path Monitoring e 447

RMTP: Monitor Pending MOUNES e e 448
RPAG: System Wide Paging Information 449
RPRO: Monitor Progress of an Address Spaceiiiiiieannn... 450
RREP: Retrieve WTOR IDSt e e e e 452
RREPRX: Retrieve WTOR IDS e 453
RRES: Retrieve Outstanding Reserves e 454
RRSM: Real Storage Management Information 455
RSPA: Retrieve DASD Space Information i 457
RSTA: Retrieve Status of an Address Space 460
RSYS: System Dump Data Sets Information 461
RTPI: Teleprocessing Input/Output Information 462
RTSU: Information on TSO USEISttt e e 463
@TIMER: Interface to Timer QUEUESttt 464
JES2DI: Retrieve Initiator Information 468
JES2DQ: Retrieve Execution Queue Information 469
CNVSECS: Convert HH:MM:SS Formatto Seconds 470
CNVTIME: Convert Time in Secondsto HH:MM:SS 471

Appendix A. SYSPROG EXEC Cross-Reference. 473

GlOSSaIY . . .ttt 481..

INAEX . . e 493

MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Tables

©CoNoOA~®WNE

Finding Additional Information. 2
REXX EXEC Parsing Example 1 e e 25
REXX EXEC Parsing Example 2 25
Example of ALERT-initiated EXEC Parameters and Variables 34
Time-Initiated EXEC Parametersand Values 38
Common FUNction EXECS e e e e 108
Special FUNCHIONS. 110
FUNCTION Names and Return Codes e 146
FUNCTION Names and IMFCC Return Codes, 249
List of IMFEXEC CICS Command Statementsv ... 263
@STATASK Parameterso e e e e 434
DELVARS Parameters.t e 435
MUTOOLC Parameters.ot e e e e e e 436
SUBMIT Parameters e 436
SUBMITOR Parameters e e e e e e 437
RASM Parameters . . .o e 437
Variables Returned by RASM inthe LOCALPOOL 438
RCPU Parameters e 439
Variables Returned by RCPU in the LOCAL POOL for Non-PR/SM Systems 439
Variables Returned by RCPU in the LOCAL POOL for PR/SM Systems 440
Variables Returned by RCSS inthe LOCALPOOL. 441
Variables Returned by RENQ inthe LOCALPOOL 442
RIO Parameters o 3....44
Variables Returned by RIO inthe LOCALPOOL 443
RMDE Parameters. e e 444
Variables Returned by RMDE inthe LOCALPOOL 444
RMON Parameters. e 445
Variables Returned by RMON inthe LOCALPOOL. 446
RMPA Parameters . ..o 447
Variables Returned by RMPA inthe LOCALPOOL 447
Variables Returned by RMTP inthe LOCALPOOL 448
Variables Returned by RPAG inthe LOCALPOOL. 449
RPRO Parameters e e 450
Variables Returned by RPRO inthe LOCALPOOL. ..., .. 450
RREP Parameters. 452
Variables Returned by RREP inthe LOCALPOOL. 452
RREPRX Parameters. e e 453
Variables Returned by RREPRX inthe LOCALPOOL 453
Variables Returned by RRES inthe LOCALPOOL. 454
RRSM Parameterso 455
Variables Returned by RRSM inthe LOCALPOOL 455
RS PA Parameters. . . . e 457
Variables Returned by RSPA inthe LOCALPOOL 459
RSTA Parameters. e 460
Variables Returned by RSTAinthe LOCALPOOL. 460
Variables Returned by RSYS inthe LOCALPOOL. 461
RT Pl Parameters e e 462
Variables Returned by RTPl inthe LOCALPOOL. 462
RTSU Parameters. e e e 463
Variables Returned by RTSU inthe LOCALPOOL. 463
@TIMER Parameters e 464

Tables Xiii

52.
53.
54.
55.
56.
57.
58.
59.

JES2DI Parameterso 468
Variables Returned by JES2DI inthe LOCALPOOL oo, 468
Variables Returned by JES2DQ inthe LOCALPOOL 469
CNVSECS Parameters e e 470
Variables Returned by CNVSECS inthe LOCALPOOL 470
CNVTIME Parameterso e e e e e 471
Variables Returned by CNVTIME inthe LOCALPOOL 471
SYSPROG Service EXEC and Variable Cross-Reference 473

XiV MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Figures

©CoNoOA~®WNE

Sample Comment Sectionfora REXXEXEC i, 27
Rule-Initiated REXX EXEC Example. e 30
ALERT-Initiated REXX EXEC Example 1.t 33
ALERT-Initiated REXX EXEC Example 2.t 34
User-Initiated REXX EXEC Example. e 36
Time-Initiated REXX EXEC Example e 40
EXEC-Initiated REXX EXEC Example e 43
Externally Initiated REXX EXEC Example 45
End-of-Memory—Initiated EXECS Example i 47
Saving Variables ina Variable Pool. 68
Retrieving Variables in a Variable Pool Example 69
Using VENQ and VDEQ to Serialize Variables 70
Multi-Line WTO EXEC Example. e e 71
Example of Using IMFEXEC CNTLNOCMDt 100
Example 1 of BBI-SS PAS Journal Entry 100
Example 2 of BBI-SS PAS Journal Entry 102
OSPI Script Development Panel 117
OSPI Transmission Keystroke Panel. 120
Example of Error Panel e 123
EXEC Management Application Panel i 417
EXEC Test Control Panel e 418
EXEC Test Control Panel—Advanced Format 419
EXEC Test Panel with the VAROFF Option. 421
EXEC Test Panel with the VARON Option. 422
EXEC Trace Panel. 423
Conditional Breakpoint Control Panel. 424
Variable Selection Panel 426
Variable Add/Update Panel 428
Variable HEX Displayo 429
OSPI Session Panel 430
Example of SYSPROG Utility Usaget 433

Figures XV

XVi MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

About This Book

The MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EX&fGs
system programmers who need to perform advanced automation tasks in the data center.

Use this manual with the MAINVIEW AutoOPERATOR product (also referred to simply as
AutoOPERATOR) to learn about:

How you can use REXX EXECs with AutoOPERATOR to create EXECs that you can use
to automate your environment, including:

— How AutoOPERATOR processes parameters in EXECs

— How to use variables and variable pools

— How to control EXEC execution in AutoOPERATOR

— How to perform some advanced tasks with EXECs across targets
— How to debug your AutoOPERATOR EXECs

How to use the Open Systems Procedural Interface (OSPI) to interact with VTAM-based
products

This manual also documents:

The IMFEXEC command statements you can use with AutoOPERATOR EXECs
AutoOPERATOR-supplied utility EXECs

How This Manual Is Organized

The manual contains the following chapters:

Chapter 1. Introduction to Using AutoOPERATOR and EXECs to Automate Your
Environment

Discusses how you can

— Use REXX EXECs and AutoOPERATOR IMFEXEC commands to write automation
tasks

— Use variables to save data

— Control EXEC execution once you schedule the EXEC

Chapter 2. Using REXX Conventions and Syntax in AutoOPERATOR REXX EXECs
Describes the conventions, syntax, and restrictions for writing REXX EXECs.
Chapter 3. Passing Parameters to REXX EXECs in AutoOPERATOR

Describes how AutoOPERATOR interprets and uses information passed to EXECs in
positional parameters.

Chapter 4. Using Variables in REXX EXECs
Describes the different types of variables and their pools and how to manipulate the pools.
Chapter 5. Controlling EXEC Execution

Describes the different ways you can send an EXEC to run and how to control its
execution.

Xvii

e Chapter 6. Using Advanced Techniques with AutoOPERATOR EXECs

Describes how you can send EXECs, messages, and ALERTS to different targets with
EXECs.

e Chapter 7. Accessing DB2 from AutoOPERATOR

Describes how you can access DB2 from AutoOPERATOR with REXX EXECs if you
have the BMC Software RxD2/LINK product installed.

e Chapter 8. Interacting with VTAM Applications with OSPI

Describes how to use Open Systems Procedural Interface (OSPI) to communicate with
VTAM applications.

e Chapter 9. Performing Automation Using AOAnywhere

Describes how to use the AOAnywhere EXEC syntax to perform automation from outside
the AutoOPERATOR BBI-SS PAS.

e Chapter 10. Accessing Array Data with AutoOPERATOR EXECs
Describes how to use IMFEXEC ARRAY commands to access data collected in arrays.
e Chapter 11. Using the MAINVIEW API

Describes commands, functions and facilities that allow AutoOPERATOR users to access
data available on the MAINVIEW Databus with AutoOPERATOR EXECs.

e Chapter 12. Using the IMFEXEC Statements

Lists the IMFEXEC command statements you can use with REXX to write EXECs to
accomplish advanced automation tasks.

e Chapter 13. Testing and Debugging EXECs Interactively

Describes when and how to use the AutoOPERATOR EXEC Tester and provides
examples of its features.

e Chapter 14. Using the AutoOPERATOR-Supplied Utility EXECs
Lists the AutoOPERATOR-supplied utility EXECs available with AutoOPERATOR.

This manual also contains:

¢ An appendix for SYSPROG service EXECs
e Aglossary
e Anindex

XVili MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

MAINVIEW AutoOPERATOR Product Library

MAINVIEW AutoOPERATOR is available with seven options:

« MAINVIEW AutoOPERATOR for OS/390

« MAINVIEW AutoOPERATOR for IMS

« MAINVIEW AutoOPERATOR for CICS

« MAINVIEW AutoOPERATOR Access NV

+ MAINVIEW AutoOPERATOR TapeSHARE

« MAINVIEW AutoOPERATOR for MQSeries

« MAINVIEW AutoOPERATOR Elan Workstation

The base product and these options are documented in the following MAINVIEW
AutoOPERATOR manuals:

« MAINVIEW AutoOPERATOR Customization Guide

« MAINVIEW AutoOPERATOR Basic Automation Guide

MAINVIEW AutoOPERATOR Advanced Automation Guide for CLIST EXECs
MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs
MAINVIEW AutoOPERATOR Options User Guide

¢ MAINVIEW AutoOPERATOR for MQSeries Installation and User Guide

« MAINVIEW AutoOPERATOR Reference Summary

MAINVIEW AutoOPERATOR Solutions Guide

This manual also makes several references to the BMC Software Intercommunications (BBI)
PAS, which provides subsystem communication in its own MVS address space. The BBI
online environment is described in the

« MAINVIEW Common Customization Guide
« MAINVIEW Administration Guide
* Using MAINVIEW

Xix

Recommended Reading

There is no recommended reading.

Related Reading

The following lists the IBM documents that are referenced in this guide:

« MVS/ESA Initialization and Tuning GuideéC28-1635

e TSO Extensions Version 2; CLISBC38-1876

e TSO Extensions Version 2: REXX User's GUgie28-1882
e TSO Extensions Version 2: REXX Refere8¢28-1883

e TSO Extensions Version 2: Customizati8@28-1872

e TSO Extensions Version 2: Command Refere8C28-1881
e CICS Supplied TransactionSC33-1686-02

e CICS Operations and Utilities Guid8C33-1685

* Routing and Descriptor Code6C28-1194

¢ Routing and Descriptor Code6&C28-1666

¢ Routing and Descriptor Code6C28-1816

e Supervisor Services and Macro Instructip@<28-1154

and the following BMC Software documents:

« MAINVIEW Common Customization Guide

« MAINVIEW Administration Guide

* Using MAINVIEW

* MAINVIEW Quick Reference

e 0S/390 and z/OS Installer Giude

e Implementing Security for MAINVIEW Products

« MAINVIEW Alternate Access Implementation and User Guide
« MAINVIEW AlarmManager User Guide

« RxD2/LINK™ User Guide and Reference

« MAINVIEW for CICS User Guide

What the Conventions Are

The following syntax notation is used in this manual. Do not enter the special characters.

e Brackets, [], enclose optional parameters or keywords.

e Braces, {}, enclose a list of parameters; one must be chosen.

« Avertical line, |, separates alternative options; one can be chosen.

e Anitalicizedor underlined parameter is the default.

e AN ITEM IN CAPITAL LETTERS must be entered exactly as shown.
e Items in lowercase letters are values you supply.

XX MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Chapter 1. Introduction to Using AutoOPERATOR and EXECs
to Automate Your Environment

This manual documents how you can use REXX EXECs with AutoOPERATOR to perform
automation tasks on your system. If you would like to write CLIST EXECs for
AutoOPERATOR, use thelAINVIEW AutoOPERATOR Advanced Automation Guide for
CLIST EXECsnanual.

For complete information for writing REXX EXECSs, refer to the IBM publicati8©
Extensions Version 2: REXX/MVS User's GuaddTSO Extensions Version 2: REXX/MVS
Reference

This chapter briefly discusses REXX EXECs and how you can use them with
AutoOPERATOR to create programs to automate your environment. This chapter introduces
the following concepts:

e Using EXECs with AutoOPERATOR

e Choosing the EXEC language

* The seven different ways an EXEC can be scheduled
e Passing information to EXECs

e Controlling EXEC execution

e Using variables in EXECs

Overview

Basic automation tasks, such as reacting to messages, are provided through facilities such as
the AutoOPERATOR Rule Processor application. More complex automation tasks, including
interfaces to performance, scheduling, and network products, require programs that can be
tailored to specific site needs. These programs, called AutoOPERATOR EXECs, are written
by system programmers or operators using either the TSO CLIST or TSO REXX language.

AutoOPERATOR EXECs:

 Are IBM TSO CLISTs and REXX programs with special language extensions for CICS,
IMS, and MVS management through the use of IMFEXEC commands

For a list of REXX commands that AutoOPERATOR dnetssupport, refer to
“Restrictions in REXX EXECs” on page 21.

e Usethe same logical expression and operator syntax as TSO CLISTs and REXX programs
and provide many of the same TSO symbolic control variables, built-in functions,
assignment statements, and conditional statements.

These are described in this book in “Using REXX Conventions and Syntax in
AutoOPERATOR REXX EXECs” on page 13 and in the IBM publicatit®)
Extensions Version 2: REXX/MVS User’s Guide

* Are upward-compatible with TSO releases and versions.

Chapter 1. Introduction to Using AutoOPERATOR and EXECs to Automate Your Environmerk

Table 1 shows where you can find more information in this book.

Table 1. Finding Additional Information

To learn more abouit... See page...
Using REXX syntax, conventions, and built-in functions 13
Passing parameters to EXECs in AutoOPERATOR 23
Using variables 49
Controlling EXEC execution 73

Using advanced techniques 87

Using the IMFEXEC statements in AutoOPERATOR REXX EXECs 237

2 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Choosing the EXEC Language: REXX or CLIST

For each task, you can choose either REXX or CLIST to write your EXECs with. CLIST is a
language which is familiar to many system programmers, but REXX is being acclaimed for its
simplicity and power.

There are some performance considerations:

« REXX EXECs perform approximately 25% faster than CLIST EXECs.

e CLIST EXEC performance can be improved by:
— Placing all comments on statements which do not include executable statements
— Coding REXX=YES in the AAOEXP0O0O member of BBPARM

e Using VLF can reduce both CPU and I/O consumption

Refer to the IBM publicatiom SO/E Version 2 Customization Manéal information on
how to use VLF.

For a complete discussion about writing TSO CLISTs, refer to the IBM publicEEGn
Extensions Version 2: CLISTBor a complete discussion about writing TSO REXX EXECs,
refer to the IBM publication$SO Extensions Version 2: REXX/MVS User’s GaitT SO
Extensions Version 2: REXX/MVS Reference

If you want to create CLIST EXECs for AutoOPERATOR, refer to the BMC Software
publicationMAINVIEW AutoOPERATOR Advanced Automation Guide for CLIST EXECs

Chapter 1. Introduction to Using AutoOPERATOR and EXECs to Automate Your Environmerd

Invoking AutoOPERATOR EXECs

A system programmer or operator can interactively create EXECs (consisting of a subset of
REXX commands and IMFEXEC commands) by using standard edit procedures. The EXECs
are then stored in the online SYSPROC DD (or SYSEXEC DD for REXX EXECS) for later
execution.

These EXECs are powerful programs that execute in the AutoOPERATOR environment and
interact with a target, thus enabling you to create robust automation procedures.

All EXECs can be initiated or invoked from the SYSPROC DD (and the SYSEXEC DD for
REXX EXECS) in one of seven ways:

EXEC How it is invoked

Rule-initiated Scheduled when a message or command matches an enabled
Rule that specifies the name of an EXEC to be invoked.

ALERT-initiated Scheduled when you enter any value intor&e field of the
ALERT Detail Display for an ALERT which has &hin the IND
field. TheE indicates that there is a follow-up EXEC associated
with the ALERT.

For information regarding the ALERT Management Facility,
refer to the chapter “ALERT Management Facility” in the
MAINVIEW AutoOPERATOR Basic Automation Guide

User-initiated Scheduled when a user enters an EXEC name from a BBI-TS.
COMMAND line with the command prefix % or 4, or is entered
as a parameter of the MVS MODIFY command when it is issued
against a BBI-SS PAS.

For example, F SYSB,%EXECA where EXECA is the name of
the EXEC to be scheduled.

You can also schedule a user-initiated EXEC from the
AutoOPERATOR EXEC Manager application. Refer to the
MAINVIEW AutoOPERATOR Basic Automation Gdmemore
information.

Time-initiated Scheduled when the AutoOPERATOR Timer Facility invokes
the specified EXEC at times you specify. You can use the
AutoOPERATOR Timer Facility to schedule EXECs or the
AutoOPERATOR-supplied sample solution @ TIMER. Refer to
the MAINVIEW AutoOPERATOR Basic Automation Gufe
more information about using these methods.

EXEC-initiated Scheduled when one EXEC (for example, EXECABC) contains
an IMFEXEC SELECT command statement that invokes a
second EXEC (for example, EXECXYZ).

EXECs scheduled in this way can execute either synchronously
or asynchronously (refer to “Invoking EXECs Synchronously
with IMFEXEC SELECT(EXEC) WAIT(YES)” on page 78).

4 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Externally initiated Scheduled from outside of AutoOPERATOR when the program
IMFSUBEX is called from a job step, as a subroutine of a user
program, from TSO, or from another AutoOPERATOR address
space.

End-of-Memory—initiated Scheduled at end-of-memory when an initiator, a TSO user, or a
started task is terminated.

These EXECSs, once they are invoked, perform their specified tasks on your system. Refer to

Chapter 3, “Passing Parameters to REXX EXECs in AutoOPERATOR” on page 23 for a
complete discussion.

Chapter 1. Introduction to Using AutoOPERATOR and EXECs to Automate Your Environmera

Passing Information to REXX EXECs

For a REXX EXEC to perform its tasks, it must be able to receive and retain information about
the system. This information is passed to EXECs through:

+ Statements called ARG statements

The first statement in an AutoOPERATOR REXX EXEC must state that this is a REXX
EXEC. The next statement is usually the ARG statement and it is coded with positional
parameters that take values from the input that schedules the EXEC and makes those
values available to the EXEC itself.

Chapter 3, “Passing Parameters to REXX EXECs in AutoOPERATOR” on page 23
contains examples of ARG statements and the information that gets passed to them
depending on the way the EXEC is invoked.

e Variables in variable pools

Variables reside in four categories of variable pools and they receive and retain
information that the EXEC requires to complete its tasks.

Chapter 4, “Using Variables in REXX EXECs” on page 49 contains a discussion about
variables and variable pools.

The table on the following two pages summarizes the different possible values for the
positional parameters on a ARG statement for the seven different EXEC types. The table
shows up to 11 positional parameters but there can be more (up to 255 bytes).

6 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Positional Parameters for the ARG Statement

Positional Rule-initiated EXEC ALERT-initiated User-initiated EXEC-initiated
Parameter EXEC EXEC EXEC
1 Refer to page 29 EXEC name EXEC name EXEC name
2 Refer to page 29 Refer to page 31 First optional First optional
parameter parameter
3 Refer to page 29 Refer to page 31 Second optional] Second optional
parameter parameter
4 Refer to page 29 Refer to page 31 Third optional | Third optional
parameter parameter
5 Refer to page 29 Refer to page 31 Fourth optional | Fourth optional
parameter parameter
6 Refer to page 29 Refer to page 31 Fifth optional Fifth optional
parameter parameter
7 Refer to page 29 Refer to page 31 Sixth optional | Sixth optional
parameter parameter
8 Refer to page 29 Refer to page 31 Seventh optiondl Seventh optional
parameter parameter
9 Refer to page 29 Refer to page 31 Eighth optional | Eighth optional
parameter parameter
10 Refer to page 29 Refer to page 31 Ninth optional | Ninth optional
parameter parameter
11 Refer to page 29 Refer to page 31 Tenth optional | Tenth optional
parameter parameter
Note: Each EXEC type is discussed separately in Chapter 3, “Passing Parameters to REXX EXECs in
AutoOPERATOR” on page 23. Refer to that chapter for more detailed information, especially for
ALERT-initiated EXECs and Rule-initiated EXECs.

Chapter 1. Introduction to Using AutoOPERATOR and EXECs to Automate Your Environmenf

Positional Parameters for the ARG Statement

Positional Time-initiated EXEC Externally initiated EXEC End-of-Memory EXEC or
Parameter IMFEOM
1 EXEC name EXEC name spl
2 Target name First optional parameter NORMAL or ABNORMAL
3 IMS ID - Used only for Second optional parameter N/A
AutoOPERATOR for IMS
option
4 BBI-SS PAS subsystem Third optional parameter N/A
identifier
5 Current Gregorian date Fourth optional parameter N/A
6 Time the EXEC is scheduled Fifth optional parameter N/A
7 Day of the week Sixth optional parameter N/A
8 Current Julian date Seventh optional parameter N/A
9 Elapsed time of the active Eighth optional parameter N/A
IMS/VS. Used only for
MAINVIEW
AutoOPERATOR for IMS.
10 The IMS/VS restart type. Ninth optional parameter N/A
Used only for MAINVIEW
AutoOPERATOR for IMS.
11 Number of times the EXEC | Tenth optional parameter N/A
has been invoked.
Used only for MAINVIEW
AutoOPERATOR for IMS.

Note: Each EXEC type is discussed separately in Chapter 3, “Passing Parameters to REXX EXECs in

AutoOPERATOR” on page 23. Refer to that chapter for more detailed information, especially for
initiated EXECs. See “End-of-Memory—Initiated REXX EXEC"” on page 46 for information about £
of-Memory—initiated EXECs.

time-
rnd-

8

MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Controlling EXEC Execution

Each EXEC represents a unit of work that needs to be completed. Just as any system that
handles requests to complete work, AutoOPERATOR provides scheduling facilities for
EXECs. EXECS are queued for execution to either:

e The Normal queue

e The Priority queue

When an EXEC is scheduled to either the Normal or Priority queue, it waits for a server, called
athread to become available.

You can control how an EXEC executes on the system by first specifying:

« How many threads you define for each queue

e Which queue you want to schedule the EXEC for

e Whether you want the EXECs to execute synchronously or asynchronously

« What time limits you specify for the queues
Once an EXEC is scheduled and running, you can also use certain BBI control commands to

manually manipulate the progress of the EXEC. Chapter 5, “Controlling EXEC Execution” on
page 73 contains discussions for all these items.

Chapter 1. Introduction to Using AutoOPERATOR and EXECs to Automate Your Environmer8

Using Variables in AutoOPERATOR EXECs

Complex EXECs must be able to do much more than issue commands and return control to
their callers. An EXEC must be able to request information from AutoOPERATOR (and other
products), compare the information, compare the time elapsed since the last observation, and
effect changes that other EXECs or products carry out.

This type of logic requires the ability to save information, either temporarily or permanently, in
a simple manner so that it can be accessed later by the same EXEC or other EXECs.

To retain this information for EXECs, AutoOPERATOR provides four kinds of variables and
variable pools. For a complete discussion, see Chapter 4, “Using Variables in REXX EXECs”
on page 49.

Variable Pool Name

Description

TSO variables

Exist for the life of the EXEC.
This chapter lists:

* AutoOPERATOR-supplied TSO variables
* Modifiable TSO variables
* Non-modifiable TSO variables

LOCAL variables

LOCAL variables are stored in a pool that can be accessed only by the c
EXEC and other EXECs (using IMFEXEC SELECT WAIT(YES)).

rrent

AutoOPERATOR passes information to an EXEC in this pool. It is also used by

AOAnywhere when sharing variables with an invoking EXEC. The LOCAL
variable pool is freed when the EXEC ends and its contents are lost.

10 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Variable Pool Name

Description

Two types of GLOBAL
variable pools: SHARED and
PROFILE

Can be saved for later executions of

The use of the expression “GLOBAL
SHARED and PROFILE variables.

the same EXEC or other EXECs.
variables” in this book refers to both

SHARED variables

SHARED variables are stored in a
pool that is accessible to all EXECs i
the BBI-SS PAS . They can be read,
modified, created and deleted by an
number of EXECs or Rules. Since
EXECs can access them
simultaneously, their access should
serialized (see IMFEXEC VENQ and
VDEQ). These variables exist in
storage beyond the life of the EXEC
that created them.

AutoOPERATOR creates a number ¢
SHARED variables that contain
system-specific information.
SHARED variables are accessible tg
the Rules Processor and remain in
memory when the subsystem is
terminated. However, they are lost
across IPLs or when a subsystem is
restarted with the VPOOL=RESET
option.

This chapter lists the
AutoOPERATOR-supplied variables

PROFILE variables

I PROFILE variables are similar to
SHARED variables with the exceptio

’/their contents are never lost unless
explicitly deleted.

)ePROFILE variables are not accessal
from Rules.

=

that they are persistent across IPLs and

le

Note:

cannot exceed 256 characters.

Variable names must be at least 1 and not more than 32 characters in length. The contents of any

variable

Chapter 1. Introduction to Using AutoOPERATOR and EXECs to Automate Your Environmdrit

12 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Chapter 2. Using REXX Conventions and Syntax in
AutoOPERATOR REXX EXECs

This chapter describes statements and variables you can use for a REXX EXEC. For more
complete information about writing REXX EXECs in general, refer to the IBM manuals:

e TSO Extensions Version 2: REXX/MVS User’s Guide
« TSO Extensions Version 2: REXX/MVS Reference

Using Expressions and Operators in REXX EXECs

All of the arithmetic, comparative and logical operators described in the IBM publicasan
Extensions Version 2 REXX Referega@le are valid in a REXX EXEC expression running
within AutoOPERATOR. An expression combines variables, whole numbers, and character
strings with operators. For example, the EXEC statement:

IF CMD = SUBSTR(Z1,1,1) THEN ...

uses the comparative operator = in an expression with the REXX IF conditional statement to
compare the first character of the character string i@ttgymbol to the value in th@evd
symbol.

The functionSUBSTR is a built-in REXX function that replaces the function call with specific
characters from a character string. The actual characters are selected by specifying a starting
position and a length for the portion of the character string to be used.

In this exampleSUBSTR is replaced with the first character of the character string substituted
for thez1 symbol.

Chapter 2. Using REXX Conventions and Syntax in AutoOPERATOR REXX EXE(s3

Using Control Statements in REXX EXECs

AutoOPERATOR EXECS support the following REXX control statenfents

Statement

CALL

EXIT

ITERATE

LEAVE

RETURN

SELECT

SIGNAL

Description

Used to invoke a routine or control the trapping of certain conditions.
Used to leave a program unconditionally.

Alters the flow of control within a repetitive DO loop.

Causes immediate exit from one or more repetitive DO loops.

Used to return control (and possibly a result) from a REXX program or
internal routine to the point of its invocation.

Note: If the EXEC is invoked with the IMFEXEC SELECT
EXEC(exec) WAIT(yes) statement, the RETURN control
statement can be used only to return control from the REXX
EXEC. Passing a value (RESULT) is not supported.

Used to conditionally execute one of several alternative instructions or
sets of instructions.

Causes an abnormal change in the flow of control, or controls the trapping
of certain conditions.

Using Assignment Statements in REXX EXECs

AutoOPERATOR EXECs support the following REXX assignment staterients.

Statement

ARG

PARSE

PULL

symbol = data

Description

Used to retrieve argument strings passed to a program or internal routine
and assign them to variables.

Used to assign data to one or more variables.

Used to read a string from the queue (data stack) and assign it to a
variable.

This assignment statement is the most common way of changing the value
of a variable.

1 The descriptions for these REXX control statements are from the IBM publicat®,Extensions Version 2:
REXX/MVS Referenc€hapter 3, “Keyword Instructions”.

2The descriptions for these REXX assignment statements are from the IBM publid&@iOrk xtensions Version
2: REXX/MVS Referenc€hapter 3, “Keyword Instructions”.

14 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Using Conditional Statements in REXX EXECs

AutoOPERATOR EXECs support the following REXX conditional statements.

Statement Description

DO-WHILE-END Executes a set of related instructions only while specific condition
exists.

DO-UNTIL-END Executes a set of related instructions until a specific condition is met.

DO-TO-BY-FOR Executes a set of related instructions using special keywords to

control the loop. See tHESO Extensions Version 2 REXX Reference
guide for more information on these keywords.

DO-FOREVER Executes a set or related instructions until a specific instruction is
issued to end the loop (for example, LEAVE or SIGNAL).

IF-THEN-ELSE Used to conditionally execute an instruction or set of instructions
depending on the evaluation of the expression.

Chapter 2. Using REXX Conventions and Syntax in AutoOPERATOR REXX EXE(sH

Using Built-In Functions in REXX EXECs

AutoOPERATOR supports the following REXX built-in functichBor additional
information on syntax and parameters to pass to the function, SEBGhExtensions Version
2 REXX Referenagguide.

Built-in Function

Description

ABBREV() Determines whether a character string is an abbreviation of another chajacter
string.

ABS() Returns the absolute value of a number.

ADDRESS() Returns the name of the environment to which host commands are currently
being submitted.

ARG() Returns an argument string or information about the argument strings tg a

program or internal routine.

CENTER() or CENTRE()

Returns a string centered according to specifications.

=

COMPARE() Determines if two strings are equal and returns 0 if so. If they are not equal,
the character position at which they become not equal is returned.

CONDITION() Returns the condition information associated with the current trapped
condition.

COPIES() Concatenates strings together and returns the concatenated string.

Cc2D() Character to decimal. Returns the decimal value of the binary representation
of a string.

C2X() Character to hexadecimal. Converts a character string to its hexadecimal
representation.

DATATYPE() Determines whether a string is numeric or character. Also determines whether
a string is alphanumeric, binary, a mixed SBCS/DBCS string, a DBCS string,
lowercase, mixed case, a number, a symbol, uppercase, a whole number, or a
hexadecimal number.

DATE() Returns the local date in the forméd: mon yyyy

DELSTR() Deletes a substring from a character string.

DELWORD() Deletes a string from a group of character strings.

DIGITS() Returns the current setting of NUMERIC DIGITS.

D2X() Decimal to hexadecimal. Returns a string of hexadecimal characters that
represent a decimal number.

ERRORTEXT() Returns the error text associated with a particular error message number.

EXTERNALS() Always returns a 0. This function is used under VM/SP.

3 The descriptions for these REXX built-in functions are from the IBM publicafi@Q Extensions Version 2:
REXX/MVS Referenc€hapter 4, “Keyword Instructions”.

16 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

of the

ns

1%

Built-in Function Description

FIND() Searches for a phrase within a character string and returns the position
first word of the phrase in the string.

FORM() Returns the current setting of NUMERIC FORM.

FORMAT() Rounds and formats a number.

FUZZ() Returns the current setting of NUMERIC FUZZ.

INDEX() Searches for a character string within another character string and retur
either the starting position of the character string being searched for or Q.

INSERT() Inserts a character string into another character string.

JUSTIFY() Formats blank-delimited words by adding pad characters between words to
justify both margins.

LASTPOS() Returns the position of the last occurrence of one string within another.

LEFT() Returns a string containing the leftmost characters of a string.

LENGTH() Returns the length of a string.

LINESIZE() For AutoOPERATOR, always returns '131".

MAX() Returns the largest number from a list of specified numbers.

MIN() Returns the smallest number from a list of specified numbers.

OVERLAY() Overlays part or all of a string with a new string.

POS() Returns the position of one string within another.

QUEUED() Returns the number of lines remaining in the queue at the time when th
function is invoked.

RANDOM() Returns a pseudo-random nonnegative whole number.

REVERSE() Returns a string, swapped end for end.

RIGHT() Returns a string containing the rightmost characters of a string.

SIGN() Returns a number that indicates the sign of a number.

SOURCELINE()

Returns a source line in the current EXEC.

is

SPACE() Formats the blank-delimited words in a string with pad characters betwegen
each word.

STRIP() Removes leading and/or trailing characters from a string.

SUBSTR() Returns the substring of a string.

SUBWORD() Returns a substring of a string of words. The number of words returned
specified by a length parameter.

SYMBOL() Returns the state of a symbol (BAD, LIT, or VAR).

TIME() Returns the local time. By default, the time is returned in the 24-hour clo|

format (hh:mm:ss).

Chapter 2. Using REXX Conventions and Syntax in AutoOPERATOR REXX EXECk/

Built-in Function

Description

ined

TRACE() Returns trace actions currently in effect.

TRANSLATE() Translates characters in a string to other characters, or reorders characters in a
string.

TRUNC() Returns the integer part of a number and, optionally, the number of decimal
places specified.

USERID() While running under AutoOPERATOR, by default will return the subsystem
(SS) ID of AutoOPERATOR. If a value is coded for the PREFIX parametey in
BBPARM member AAOEXPO0O0, that will be the value returned.

VALUE() Returns the value of a specified symbol.

VERIFY() Verifies that a string is composed of a predefined set of characters and returns
the position of the first character in the string that is not within the predef
set of characters.

WORD() Returns a blank-delimited word from a string.

WORDINDEX()

Returns the position of the first character in a specified blank-delimited yword

in a specified string.

WORDLENGTH() Returns the length of a specified blank-delimited word in a specified stripg.

WORDPOS() Searches a specified string for the first occurrence of a specified sequence of
blank-delimited words and returns the word number of the first word of the
specified sequence of blank-delimited words found in the specified string.

WORDS() Returns the number of blank-delimited words in a specified string.

X2C() Converts a hexadecimal string to a character string.

X2D() Converts a hexadecimal string to decimal format.

In addition to these built-in functions, if you have the BMC Software product RxD2/LINK
product installed, AutoOPERATOR also has access to the following REXX built-in functions.

Built-in Function

Description

CONVSTCK(tod) Converts the 8-byte TOD clock into display format of YYYYDDD
HHMMSSTH.

CTOD(tod) Converts the 8-byte TOD clock time into display format of HHMMSSTH,|

F2C(f) Converts a floating point string to a character string.

GBLVAR Creates and manages the global variable environment.

P2C(p) Creates a packed decimal string to a character string.

UENV(hcename,pgm)

Identifies to REXX Host Command Environment (HCE) called hcenam
such that pgm will receive control for ADDRESS hcename.

VARSPF()

Converts a compound REXX variable to a simple ISPF dialog variable.

WAITSEC()

Specifies the number of seconds to wait before continuing to process.

18 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Using TSO/E Functions for REXX EXECs

AutoOPERATOR supports the following TSO/E REXX functichBor additional information
on syntax and parameters to pass to the function, s@&d-xtensions Version 2 REXX
Referenceuide.

Function Description

LISTDSI() Sets several variables that describe a data set and returns a function code of D, 4, or
16 that shows the completion code.

MSG() Returns the previous status of message issuing, which can be ON or OFF. It also
allows you to turn message issuing on or off.

OUTTRAP() Returns the name of the variable in which trapped output is stored, or if trapping is
not in effect, returns the word off. It also can be used to set trapping into effect.

PROMPT() Returns the previous setting of prompting for the EXEC, which will always be|OFF
when running under AutoOPERATOR.

STORAGE() Returns a specified number of bytes of data from a specified storage address. It also
allows an EXEC to modify storage.

SYSDSN() Returns a message indicating whether a data set exists and is available for use.

SYSVAR() Sets variables that describe the current environment. The variable set depends upon

the option used.

4 The descriptions for these REXX built-in functions are from the IBM publicafi@Q Extensions Version 2:
REXX/MVS Referenc€hapter 4, “Keyword Instructions”.

Chapter 2. Using REXX Conventions and Syntax in AutoOPERATOR REXX EXECK9

Using TSO/E REXX Commands in REXX EXECs

AutoOPERATOR supports the following TSO/E REXX commaritigou specify the
ADDRESS MVS command prior to issuing the command. For additional information on
syntax and usage of the commands, sed@ 8t Extensions Version 2 REXX Referendde.

Command

DELSTACK

DROPBUF

EXECIO

MAKEBUF

NEWSTACK

QBUF

QELEM

QSTACK

SUBCOM

Description

Deletes the most recently created data stack that was created by the
NEWSTACK command, and all elements on it.

If a new data stack was not created, DELSTACK removes all the elements
from the original data stack.

Deletes the most recently created data stack buffer that was created by the
MAKEBUF command, and all elements on the data stack in the buffer.

To remove a specific data stack buffer and all buffers created after it, issue
the DROPBUF command with the number of the buffer.

Can be used to perform input and output operations to and from a data set,
a stack, or a list of variables.

Creates a new buffer on the data stack.

The MAKEBUF command can be issued from REXX EXECs that execute
in both the TSO/E address space and non-TSO/E address spaces.

Creates a new data stack and hides or isolates the current data stack.

Elements on the previous data stack cannot be accessed until a
DELSTACK command is issued to delete the new data stack and any
elements remaining in it.

Queries the number of buffers that were created on the data stack with the
MAKEBUF command.

Queries the number of data stack elements that are in the most recently
created data stack buffer.

Queries the number of data stacks in existence for an EXEC that is
executing.

Queries the existence of a specified host command environment.

5The descriptions for these TSO/E REXX commands are from the IBM publicat®a,Extensions Version 2:
REXX/MVS Referenc€hapter 10, “TSO/E REXX Commands”.

20 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Restrictions in REXX EXECs

AutoOPERATOR REXX EXECs do not support the following REXX language facilities.
* Immediate Commands:

— HI - Halt Interpretation, HT - Halt Typing
— RT - Resume Typing, TS - Trace Start
— TE - Trace End

AutoOPERATOR REXX EXECs do not support the following REXX function:
« XRANGE()

AutoOPERATOR REXX EXECs do not support using the TSO/E CALL or TSO/E Service
Facility (IKJEFFTSR) to give control to an authorized program.

Chapter 2. Using REXX Conventions and Syntax in AutoOPERATOR REXX EXEG1

22 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Chapter 3. Passing Parameters to REXX EXECs in
AutoOPERATOR

This chapter describes:

The four components of a REXX EXEC

The differences in the ways parameters are passed based on how an AutoOPERATOR
REXX EXEC is invoked

For information about CLIST EXECs and AutoOPERATOR, refév&dNVIEW
AutoOPERATOR Advanced Automation Guide for CLIST EXECs

Understanding the Four Components of a REXX EXEC

This section briefly describes the four components of REXX EXECs. There are four steps to
writing REXX EXECs:

Defining the language

All EXECs are assumed to be CLIST EXECs unless the first statement identifies the
EXEC as a REXX EXEC. Refer to the IBM publicati®B8O Extensions Version 2:
REXX/MVS User’s Guider a complete discussion.

Passing data

You must include a statement—called the ARG statement—that defines the input
parameters to be used by the EXEC logic.

Documenting the EXEC

You can include comments, enclosed by /* and */, throughout the EXEC to describe the
purpose of the EXEC statements

Writing the logic

A logic section that contains REXX EXEC statements and commands, and
AutoOPERATOR IMFEXEC commands that perform user-defined automation tasks. Use
the IMFEXEC commands to specify the automation actions and commands you want the
EXECs to perform.

Each of these parts is described in the following sections.

Chapter 3. Passing Parameters to REXX EXECs in AutoOPERATGE3

Defining the Language

Passing Data

The TSO/E processor assumes that it is executing a CLIST EXEC unless the first statement it
encounters (the PROC statement) defines the EXEC as a REXX EXEC. For example, if the
first statement looks like:

/* REXX EXEC */

then the EXEC is processed as a REXX EXEC.

The REXX EXEC receives data to perform its task through the ARG statement.
AutoOPERATOR uses these parameters to pass values to an EXEC when the EXEC is
invoked.

The information passed through the ARG statements varies, depending on the way the EXEC
is invoked. For example, an EXEC can be invoked by a Rule or by a user and the values passed
to the EXEC for these two methods are different.

The ARG statement syntax is:

[UPPER] ARG [template]

where:
UPPER Optional.
Forces translation of any character string to uppercase. If UPPER is not
specified, then no translation takes place.
ARG Instructs REXX to process the arguments passed to this REXX EXEC.
template Describes the rules to be used in parsing the input parameters. The

template is a list of symbols separated by blanks and/or patterns.

Handling Strings of Periods

AutoOPERATOR passes all variables required by the type of EX&Ca character string of
R ". The sum of the number of characters in this string and the number of characters in
the variables passed to the EXEC is 255. This string of periods is concatenated to the value of
the last positional parameter passed to the EXEC.

For example, if the input parameters are:
This is a test
Then you code the ARG statement like this:

ARG P1 P2 P3

24 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

And the values of the parameters P1, P2, and P3 are:

Table 2. REXX EXEC Parsing Example 1

Positional Parameter Parameter Value

P1 This

P2 is

P3 atest............ (and so on)

To avoid this string of periods, code a single period (.) or any valid variable name after the last
variable name in the template; for example:

ARG P1 P2 P3 .

This eliminates the string. Then the values of the parameters P1, P2, and P3 are:

Table 3. REXX EXEC Parsing Example 2

Positional Parameter Parameter Value
P1 This

P2 is

P3 a

If fewer values are to be passed to the EXEC than there are parameters specified, the extra
parameters are filled in with a dummy value of . (period). It is not necessary to use each
symbolic parameter in the logic section of the EXEC.

In AutoOPERATOR, EXECs can be invoked in seven ways. The information (or input) passed
to the REXX EXEC varies depending on how the EXEC is invoked. The input passed to the

positional parameters can be different if an EXEC is invoked by a Rule (Rule-initiated EXECSs)
or by a user (user-initiated EXECSs).

Following is an example ARG statement for an EXEC named PAYROLL which starts or stops
a payroll application when a user schedules the EXEC:

ARG PAYROLL P1

To invoke the EXEC, enter its name (PAYROLL) and the parameter value (START or STOP)
on the COMMAND line of any AutoOPERATOR panel. AutoOPERATOR searches
BBPROC and executes the EXEC when it finds a member named PAYROLL. It passes a
START or STOP value to the P1 positional parameter and passes the EXEC name,
PAYROLL, as the first positional parameter in the variable named PAYROLL.

AutoOPERATOR does not do the parsing of the message text for Message-initiated EXECs.
For example, to parse the message:

E JOBNAME , PERFORM=999
you must code the REXX EXEC as:

/* REXX */
PARSE ARG P1 P2 *," P3 *," P4

Chapter 3. Passing Parameters to REXX EXECs in AutoOPERATCED

The result is:

P1=E

P2 = JOBNAME
P3 = PERFORM
P4 =999

The following table lists where you can find complete discussions of each type of REXX
EXEC and the parameters that are passed to them:

To read about... See page...
Rule-initiated EXECs 29
ALERT-initiated EXECs 31
User-initiated EXECs 36
Time-initiated EXECs 38
EXEC-initiated EXECs 42
Externally initiated EXECs 44
End-of-Memory—initiated EXECs 46

26 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Documenting REXX EXECs

As discussed in “Passing Data” on page 24, the ARG statement identifies the parameters that
the subsequent IMFEXEC commands and EXEC statements process.

Following the ARG statement, you should have a section that uses comment statements to
describe the symbolic parameters. A comment statement looks like:

/* This is an example of a comment in an EXEC */

This comment section is optional but highly recommended because it provides consistency and
helps other system administrators, analysts, or operators who use or maintain the EXEC. The
comment section explains the purpose of the EXEC and the expected values to be passed to
each symbolic parameter defined by the ARG statement.

Figure 1 shows an example of the ARG statement and comment section for a user-initiated
REXX EXEC named PAYROLL.

/* REXX EXEC */
ARG PAYROLL P1

/* __ */
/* DOC GROUP (MVS) */
/* DOC FUNC (PAYROLL) */
/* DOC CODE (PY) */
/* DoC DESC (Start/Stop PAYROLL Application) */
/* DOC AUTHOR (JAC) */
/* __ */

/* EXEC Description: This sample EXEC, named PAYROLL, starts or */
/* stops the payroll application when the EXEC name, PAYROLL,along*/
/* with a START or STOP parameter, is entered in the command input*/

/* line of an AutoOPERATOR panel. */
/* __ */
/* Symbolic Parameter Definitions: */
/* */
/* EXECNAME The member name for this EXEC in the SYSPROC */
/* concatenated data set. The value for EXECNAME */
/* is PAYROLL. */
/* */
/* P1 The value for P1 is either START or STOP. */
/* __ */

Figure 1. Sample Comment Section for a REXX EXEC

Chapter 3. Passing Parameters to REXX EXECs in AutoOPERATGR/

Writing the Logic Section
The logic section of a REXX EXEC is a combination of programming elements such as:

Element type For example:

TSO REXX assignment statements ARG, PARSE, PULL

TSO REXX Control statements CALL, EXIT, ITERATE
TSO REXX Built-in functions DATE(), SUBSTR(), WORD()
AutoOPERATORuvariables QIMFID, QSMFID, QJNLSTA

and AutoOPERATOR IMFEXEC statements that enable you to write automation procedures.
The concept is identical to programming in other languages such as COBOL and PL/I, except
that REXX EXECs are not compiled prior to execution.

This chapter describes passing parameters to AutoOPERATOR REXX EXECs. For complete
information about writing REXX EXECSs, refer to the IBM publicatiBBO Extensions
Version 2: REXX/MVS User’s Guide

Describing AutoOPERATOR REXX EXECs

The following sections describe the different AutoOPERATOR REXX EXECs based on how
they can be invoked in AutoOPERATOR and how information is passed to the ARG
statement.

28 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Rule-Initiated REXX EXECs

Potential Use

An EXEC is Rule-initiated if its name is specified in B¥eC Name/Parms field of the Rule
Processor Action Specification panel of a fired rule.

Refer to the Rule Processor chapters inMi#¢NVIEW AutoOPERATOR Basic Automation
Guidefor more information about writing Rules and how to write a Rule that schedules an
EXEC.

EXECs scheduled by a Rule through the Rule Processor application can perform automation
that cannot be performed by a Rule. For example, a Rule-initiated EXEC can, based on the text
of a message, issue ALERTS, submit other EXECs, or invoke SYSPROG services. In general,
use Rule-initiated EXECs to perform advanced automation as a result of a message.

Parameters Passed to the EXEC

The individual words of the message that caused a Rule to fire are passed as input to the
EXEC. A word is any character string separated by a blank or a comma.

Example of input:

The message:

$HASP103 CMFTEXT BABO31

is an example of a message that can cause a Rule to fire. If the Rule has an EXEC associated

with it, then the words of this message are passed as parameters to the ARG statement of the
EXEC.

Specifying Additional Parameters

From the Rule Processor Action Specification panel, you also can specify additional
parameters you want to send to the EXEC. This is done @xe@Parms field of any
Action Specification panel.

Note that the first parameter specified in this field becomes the first parameter passed to the
EXEC. Subsequent parameters are passed to the EXEC in the order they were entered.

This means the message ID and any message text will not be passed to the EXEC. To have the

message ID and any message text passed to the EXEC, the Rule must use the IMFTEXT
variable.

Chapter 3. Passing Parameters to REXX EXECs in AutoOPERATCEO

Example

The following is an example of a Rule-initiated EXEC scheduled by the Rule handling the
$HASP103 message.

/*REXX EXEC */

ARG MSGID SETUP W2 W3

/* __ */
/* DOC GROUP(MVS) FUNC(JES2) CODE(J2) */
/* DOC DISP(YES) AUTHOR(B&B) */
/* DOC DESC(RESPOND TO $HASP103 AND WRITE MESSAGE TO JOURNAL) */
/* __ */

"IMFEXEC MSG "JOB "SETUP'™ IS REQUESTING "w2"*""

EXIT

Figure 2. Rule-Initiated REXX EXEC Example

The positional parameters passed to the ARG statement of the Rule-initiated EXEC are shown

in the following table:

nat

Positional Variable Value Passed Description of Value Passed

Parameter Name

1 MSGID $HASP103 Is the message ID of the message that fired the Rule t
calls this EXEC

2 SETUP CMFTEXT Is the name of the job requesting a tape mount

3 w2 BABO031 Is the volume serial number of the tape to be mounted

4 w3 Is a dummy value used to fill in for the fourth parameter|

that was not passed with the message

Describing the Example

This EXEC issues the IMFEXEC MSG command to write a message to the BBI-SS PAS
Journal that, when all the values from the input are substituted for the ARG statement

parameters, translates into:

JOB CMFTEXT 1S REQUESTING BABO31

For information about Rule-initiated EXECs and retrieving information from MVS multi-line
WTOs or IMS multi-segment messages, refer to “Rule-Initiated EXECs Initiated by MVS
Multi-Line or Multi-Segment Messages” on page 71.

30 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

ALERT-Initiated REXX EXECs

An ALERT-initiated EXEC (also called a follow-up EXEC) is scheduled by a user from the
ALERT Management Facility. When coding the EXEC that issues the IMFEXEC ALERT
command, use the EXEC parameter to specify the name of the follow-up EXEC.

The EXEC is then scheduled from the ALERT Detail panel of the ALERT Management
Facility by entering any value (up to three characters) iR$Recolumn of the panel.

To read about ... Refer to ...

How to actually invoke the EXEC Chapter 3, the “ALERT Management Facilityf i
the MAINVIEW AutoOPERATOR Basic
Automation Guide

n

About coding an ALERT with an Chapter 6, “Using the IMFEXEC Command
associated EXEC Statements” in this book

Potential Use

When an ALERT appears on the DETAIL display, it may require an advanced automation
response. An ALERT-initiated EXEC can handle such a response. By entering any value (up to
three characters) in tiesP column of the ALERT Detail panel, you can schedule a follow-up
EXEC.

One possible use for an ALERT-initiated EXEC is to log messages in the BBI-SS PAS Journal.
Parameters Passed to the EXEC

When an ALERT-initiated EXEC is coded, theFEXEC ALERT . . . EXEC(ABC)
command can schedule the follow-up EXEC with or without parameters. In this example, the
EXEC name if\BC:

e Without optional parameters:
"IMFEXEC ALERT ... EXEC(ABC)"
* With optional parameters(y z):
"IMFEXEC ALERT ... EXEC("ABC x y z")"

If the EXEC has parameters, yowust enclose them in single quote marks {) with the
EXEC name. If you do not, only the EXEC name will be passed and the parameters will
not be passed.

See the two examples of input on page 32 for more information.

The first positional parameter passed to the ALERT-initiated EXEC is always the EXEC name.
The characters that you enter in &®&P column ALERT Detail Display to schedule the EXEC

are also passed. However, the position that those characters have depends on whether or not
you use optional parameters.

Chapter 3. Passing Parameters to REXX EXECs in AutoOPERATC&L

Example of input without parameters

For example, the user enters:
DEF
in theRSP column of the ALERT DETAIL DISPLAY panel.

Then, the ARG statement receives data passed in the following way:

Positional Value passed Description of value passed

parameter

1 EXEC name Is the name of the EXEC

2 DEF (contents of Is the (up to) three character string the user

RSP column) enters in th&SP column of the ALERT

DETAIL DISPLAY panel to actually invoke
the ALERT

3 through n Text of the ALERT Are the actual words of the ALERT asoociated
with the invoked EXEC

n+1 The period pads the positional parameter

Example of input with parameters
For example, the user enters:
DEF
in theRSP column of the ALERT DETAIL DISPLAY panel.

Then, the ARG statement receives data passed in the following way:

Positional Value passed Description of value passed

parameter

1 EXEC name Is the name of the EXEC

2 X Is the first parameter passed to the EXEC

3 y Is the second parameter passed to the EXEC

4 z Is the third parameter passed to the EXEC

5 DEF (contents of Is the (up to) three character string the user

RSP column) enters in th&SP column of the ALERT

DETAIL DISPLAY panel to actually invoke
the ALERT

6 through n Text of the ALERT Are the actual words of the ALERT associated
with the invoked EXEC

n+1 The period pads the positional parameter

32 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Example 1: ALERT-Initiated EXEC without Optional Parameters

This example shows an IMFEXEC ALERT statement that schedules an EXEC named SETJOB

without any optional parameters:

"IMFEXEC ALERT KEYSETUP

"SETUP BABO31 . . . JOB 00395" EXEC(SETJOB)",

"QUEUE(ABC) PRI(INFO)"

The ALERT generated by this statement looks like:

RSP TIME

IND ORIGIN

10:15 e SYSB

SETUP BABO31 . . . JOB 00395

The user enters OUT (or any up to three-character string) Rstheolumn. The positional

parameters passed to the ALERT-initiated EXEC in this example are defined in the following

table.
Positional Variable Variable Passed | Description of Variable Passed
Parameter Name
1 EXECNAME SETJOB Is the name of the EXEC
2 RSP OUT (contents | Is the (up to) three character string the user enters Rsthe
of RSP column) | column of the ALERT DETAIL DISPLAY panel to actually
invoke the ALERT
3 ATEXT1 SETUP First word of ALERT text
4 ATEXT2 BAB031 Second word
5 ATEXT3 Third word
6 ATEXT4 Fourth word
7 ATEXTS Fifth word
8 ATEXT6 JOB Sixth word
9 ATEXT7 00395 Is the last word of the ALERT text
10 The period pads the positional parameters

/* REXX EXEC */
ARG EXECNAME RSP ATEXT1 ATEXT2 ATEXT3 ATEXT4 ATEXTS ATEXT6 ATEXT7 .

/* __ */
/* DOC GROUP(MVS) FUNC(JES2) CODE(J2) */
/* DOC DISP(YES) AUTHOR(B&B) */
/* DOC DESC(WRITE MESSAGE FOR SETUP) */
/* __ */

"IMFEXEC MSG "ALERT "EXECNAME™ IS REQUESTING SETUP FOR JOB "ATEXT7'="

EXIT

Figure 3. ALERT-Initiated REXX EXEC Example 1

Chapter 3. Passing Parameters to REXX EXECs in AutoOPERATCE3

Describing the Example

This EXEC issues the IMFEXEC MSG command to write a message to the BBI-SS PAS
Journal that, when all the values from the input are substituted for, translates into:

ALERT SETJOB IS REQUESTING SETUP FOR JOB 00395

Example 2. ALERT-Initiated EXEC with Optional Parameters

This example shows an IMFEXEC ALERT statement that schedules an EXEC named SETJOB
with the optional parameter IMMEDIATE:

"IMFEXEC ALERT KEYSETUP "SETUP BABO31 .
"EXEC("SETJOB IMMEDIATE®)"

- JOB 00395"",

The ALERT generated by this statement looks like:

RSP TIME IND ORIGEN —mm oo oo
10:15 e SYSB SETUP BABO31 . . . JOB 00395

The user enters OUT (or any up to three-character string) RStheolumn. The positional
parameters passed to the ALERT-initiated EXEC in this example are defined in the following
table.

Table 4. Example ALERT-initiated EXECParameters and Variables

Positional Variable Variable Value | Description of Variable Value

Parameter Name

1 EXECNAME SETJOB Is the name of the EXEC

2 TIME IMMEDIATE Is the optional parameter passed to the EXEC to specify when
the job should be run

3 OUT (contents | Is the (up to) three-character string the user enters RSthe

of RSP column)| column of the ALERT DETAIL DISPLAY panel to actually

invoke the ALERT

4 ATEXT1 SETUP First word of ALERT text

5 ATEXT2 BABO031 Second word of ALERT text

6 The period pads the positional parameters

ARG EXECNAME TIME RSP ATEXT1 ATEXT2 .

o */
/* DOC GROUP(MVS) FUNC(JES2) CODE(J2) DOC DISP(YES) */
/* AUTHOR(B&B) /* DOC DESC(WRITE MESSAGE FOR SETUP & TIME) */
/* __ */
*IMFEXEC MSG

"ALERT "EXECNAME™ IS REQUESTING SETUP FOR "ATEXT2" AT "TIME"""
EXIT

Figure 4. ALERT-Initiated REXX EXEC Example 2

34 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Describing the Example

This EXEC issues the IMFEXEC MSG command to write a message to the BBI-SS PAS
Journal that, when all the values from the input are substituted for, translates into:

ALERT SETJOB IS REQUESTING SETUP AT IMMEDIATE FOR JOB 00395

Chapter 3. Passing Parameters to REXX EXECs in AutoOPERATCBD

User-Initiated REXX EXECs

A user-initiated EXEC (also known as a command-initiated EXEC) is scheduled when a user
enters the EXEC name from the BBI terminal session (TS) command line with the command
prefix of % or 4.

You also can schedule a user-initiated EXEC by issuing a MVS MODIFY command against a
BBI PAS subsystem (BBI-SS PAS); for example:

F SYSB,%EXECB
Finally, you also can use the AutoOPERATOR EXEC Manager application to issue a user-

initiated EXEC. Refer to th®IAINVIEW AutoOPERATOR Basic Automation Gudmemore
information.

Potential Use

Use user-initiated EXECs when you want to schedule an EXEC from a TS or an MVS console.
The example in this section shows how to schedule an EXEC named START for execution.
This EXEC is used to vary a VTAM node online.

Parameters Passed to the EXEC

The first positional parameter is the 1- to 8-character EXEC name (in this3Jase). Any of
the positional parameters are optional.

Example of input:

To use the EXEC named START, enter the following command on any TS command line:

%START termid

wheretermid is the name of the VTAM node you specify to bring online. For example, this
termid value could be BS4000. The command would look like:

%START BS4000

Example

The following shows an example of an EXEC that would be scheduled:

/* REXX EXEC */
ARG START TERMID .

/* __ */
/* DOC GROUP(MVS) FUNC(VTAM) CODE(VT) */
/* DOC DISP(YES) AUTHOR(B&B) */
/* DOC DESC(ACTIVATE THE NODE) */
/* __ */

"IMFEXEC CMD #VARY NET,ACT,I1D="TERMID""*

EXIT

Figure 5. User-Initiated REXX EXEC Example

36 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

The positional parameters passed to the ARG statement of the user-initiated EXEC are shown
in the following table:

Positional Variable Value Passed | Description of Value Passed

Parameter Name

1 START START Is the EXEC name

2 TERMID BS4000 Is the name of the terminal

3 . . The period pads the positional
parameters

Describing the Example

In this example, the IMFEXEC CMD statement is used to issue a VTAM command to vary a
terminal online. Refer to “CMD (Issue IMS Command without Response)” on page 315 and
“CMD (MVS Version with Response through X-MCS Consoles)” on page 310 for more
information about the IMFEXEC CMD command and MVS commands.

Chapter 3. Passing Parameters to REXX EXECs in AutoOPERATCR/

Time-Initiated REXX EXECs

Time-initiated EXECs are invoked when:
* An EXEC name is specified in the AutoOPERATOR TIMEXEC application.

These EXECs are invoked by AutoOPERATOR Timer Facility when the user-defined
time condition occurs. Refer to the section called “TIMEXEC Application” in the
MAINVIEW AutoOPERATOR Basic Automation Guide

* ABLKrequestis issued
« An EXEC-initiated EXEC uses the CALLX service

For example, by coding:

"IMFEXEC IMFC SET REQ=CALLX @HOURLY START=06:00:00 STOP=16:00:00
1=01:00:00"

EXEC @HOURLY will execute every hour, beginning at 6:00 am and
ending at 4:00 pm.

e The @TIMER sample solution is used (refer toM&NVIEW AutoOPERATOR Basic
Automation Guiddor more information).

Potential Use

Any production environment that follows a daily schedule requires specific jobs to start and
stop at the same time every day. Using the AutoOPERATOR Timer Facility, you can have
EXECs automatically scheduled at specific times to perform automation tasks or react to
certain activities.

Parameters Passed to the EXEC

Time-initiated EXECs have specific information passed to the 11 positional parameters as
described in this table.

Table 5. Time-Initiated EXEC Parameters and Values

Positional Description of Parameter Value

Parameter

1 EXECNAME - 1 to 8 character name of this EXEC.

2 1- to 8-character target name.

3 AutoOPERATOR for IMS only.
This is the 4-character IMS ID used by AutoOPERATOR for IMS only. This variable must be
coded; however, its value is unpredictable for AutoOPERATOR for CICS and AutoOPERATOR
for MVS.

4 4-character BBI-SS PAS Subsystem identifier.

5 Current Gregorian date in mm/dd/yy format.

38 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Table 5. Time-Initiated EXEC Parameters and Values (Continued)

Not used by MAINVIEW AutoOPERATOR for CICS or MVS. This variable must be coded;

,5is

mat of

Positional Description of Parameter Value
Parameter
6 The time the EXEC is scheduled. The time is in the hours:minutes:seconds format of hh:mm:ss.
This is the time when the timer-driven request interval expires. In a congested system, the actual
EXEC execution could be delayed because of MVS dispatching priorities.
7 Day of the week is a digit, where 1 is Monday, 2 is Tuesday, 3 is Wednesday, 4 is Thursday
Friday, 6 is Saturday, and 7 is Sunday.
8 Current Julian date in yyddd format.
9 MAINVIEW AutoOPERATOR for IMS only.
Not used by MAINVIEW AutoOPERATOR for CICS or MVS. This variable must be coded;
however, its value is unpredictable for MAINVIEW AutoOPERATOR for CICS and MAINVIEW
AutoOPERATOR for MVS.
This is the elapsed time that IMS/VS has been active in the total hours:minutes:seconds fo
hhh:mm:ss. This is the elapsed control region job time, not the elapsed time since the first IMS/VS
checkpoint. If IMS/VS is not active, the value is 000:00:00.
10 MAINVIEW AutoOPERATOR for IMS only.
Not used by MAINVIEW AutoOPERATOR for CICS or MVS. This variable must be coded;
however, its value is unpredictable for MAINVIEW AutoOPERATOR for CICS and MAINVIEW
AutoOPERATOR for MVS.
The IMS/VS restart type, as follows:
ERE Emergency restart
WARM Warm restart
COLD Cold restart
INACT IMS/VS is not active. This value is also passed during:
— IMS/VS initialization until the first checkpoint is taken
— IMS/VS termination after the shutdown checkpoint is issued
It remains INACT until IMS/VS restarts and the first checkpoint is taken.
11 MAINVIEW AutoOPERATOR for IMS only.

however, its value is unpredictable for MAINVIEW AutoOPERATOR for CICS and MAINVIEW

AutoOPERATOR for MVS.

A 1- to 5-digit number for the numer of times the EXEC has been invoked. The P10 value is
to 1 every time the P9 status changes.

Chapter 3. Passing Parameters to REXX EXECs in AutoOPERATCB9

reset

It is not always necessary to identify all 11 parameters on the PROC statement. For example,
an EXEC may only require positional parameter eight (the current Julian date). In this case
only the first eight parameters need to be coded on the PROC statement. The required PROC
would be:

ARG SUBJOB P1 P2 P3 P4 P5 P6 P7 P8

Example

/* REXX EXEC */
ARG EXECNAME

/* ___ */
/*EXEC Description: This sample EXEC displays the status of your*/
/* system. */
/* ___ */
/*Positional Parameter Count: */
/* */
/*11 The total number of ARG parameters. This value will*/
/* always be 11 for a time-initiated EXEC. */
/* */
/*Symbolic Parameter Definitions: */
/* */
/*SSTATUS The BBPROC member name for this EXEC. */
/* */
/* ___ */
"IMFEXEC CMD .D V,ALL"™ /* Displays all shared variables */
"IMFEXEC CMD .D L,ALL"™ /* Displays of all BBI-SS PAS/BBI-SS PAS */
Links */
"IMFEXEC CMD .D R /* Displays remote users */
"IMFEXEC CMD .D A" /* Displays ACTIVE STATUS */
EXIT

Figure 6. Time-Initiated REXX EXEC Example

The positional parameters passed to the ARG statement of the time-initiated EXEC are shown
in the following table:

Positional Variable Value Passed Description of Value Passed

Parameter Name

1 EXECNAME SSTATUS Is the name of the EXEC invoked
by the timer facility

40 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Describing the Example

This EXEC uses the IMFEXEC CMD command to issue various BBI control commands to be
logged to the BBI -SS PAS Journal. The ARG statement is written as the first REXX statement
of the EXEC named SSTATUS by specifying:

ARG EXECNAME

where:
* ARG instructs REXX to process the arguments passed to this REXX EXEC
* EXECNAME is a variable which contains the name of the EXEC

There is only one positional parameter in this statement, the variable containing the EXEC
name. The remaining 10 positional parameters are ignored.

This time-initiated EXEC is scheduled to take a snapshot of the BBI environment. The EXEC
uses only one input variable for this task and it issues four BBI control commands so the output
is recorded in the BBI-SS PAS Journal. This allows you to review the data.

Chapter 3. Passing Parameters to REXX EXECs in AutoOPERATORL

EXEC-Initiated REXX EXECs

An EXEC-initiated EXEC is scheduled when the IMFEXEC SELECT command is coded,
specifying the EXEC parameter. The EXEC parameter names the EXEC to be scheduled along
with any parameters; for example:

"IMFEXEC SELECT . . . EXEC(execname)"

whereexecname is the name of any EXEC to be scheduled.

Potential Use

Use an EXEC-initiated EXEC when you want to:
« Invoke a common EXEC that might be used by several other EXECs
e Schedule another EXEC and have it execute asynchronously

EXEC-initiated EXECs can be scheduled to execute either synchronously or
asynchronously by the calling EXEC. For more information, see“Invoking EXECs
Synchronously with IMFEXEC SELECT(EXEC) WAIT(YES)” on page 78 .

Parameters Passed to the EXEC

The first positional parameter is the 1- to 8-character name of the EXEC. Any following
positional parameter are optional.

Example of input:

The command:

"IMFEXEC SELECT EXEC(START BS4000)"

schedules the EXEC called START for execution. An optional parameter containing the value
BS4000 is passed to START as input.

Example

This example shows the calling EXEC that schedules the called EXEC named START:

/* REXX EXEC */

/* __ */
/* DOC GROUP(MVS) FUNC(VTAM) CODE(VT) */
/* DOC DISP(YES) AUTHOR(B&B) */
/* DOC DESC(CALL ACTIVATE EXEC) */
/* __ */

"IMFEXEC SELECT EXEC(START BS4000)"

EXIT

42 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

This example shows the called EXEC:

/* REXX EXEC */

ARG START TERMID .

/* DOC GROUP(MVS) FUNC(VTAM) CODE(VT)
/* DOC DISP(YES) AUTHOR(B&B)

/* DOC DESC(ACTIVATE THE NODE)
/o

"IMFEXEC CMD #VARY NET,ACT, ID=""TERMID""""

EXIT

*/
*/
*/
*/
*/

Figure 7. EXEC-Initiated REXX EXEC Example

The positional parameters passed to the EXEC-initiated EXEC are shown in the following

table:
Positional | Variable Value Description of Value Passed
Parameter | Name Passed
1 START START Is the name of the EXEC
2 TERMID BS4000 Is the name of the terminal to be started on
3 The period pads the positional parameters

Describing the Example

ine

The called EXEC in this example receives a parameter from the calling EXEC (BS4000) and
uses that value to vary a VTAM node active with the IMFEXEC CMD command. Refer to

“CMD (MVS Version with Response through X-MCS Consoles)” on page 310 for more

information about the IMFEXEC CMD statement and MVS commands.

Chapter 3. Passing Parameters to REXX EXECs in AutoOPERATOR3

Externally Initiated REXX EXECs

Potential Use

Externally initiated EXECs are scheduled by:
e Ajob step that executes the IMFSUBEX program
e A user-written program

e ATSO user The EXEC that IMFSUBEX schedules is called an externally initiated EXEC.

There are many instances where full automation requires the completion of a task that is not an
EXEC and is running outside of the BBI-SS PAS. A database backup is one example. When
the backup completes, you can use an externally initiated EXEC to notify AutoOPERATOR to
schedule any further actions.

Two possible ways to do this are through writing a Rule and through IMFSUBEX. If you use
the Rule Processor application to write Rules, then:

1. Create a message with a unique message-ID
2. Send the message to the operator's console

3. Create a Rule to process the message

If you use the IMFSUBEX facility, you can directly schedule an EXEC to take subsequent
automation actions. For more information for how to invoke externally initiated EXECs, refer
to “Invoking REXX EXECs from Outside of AutoOPERATOR with IMFSUBEX” on page 93.

Parameters Passed to the EXEC

The first positional parameter is the 1- to 8-character name of the EXEC. Any following
positional parameter are optional.

Example of input:

The following JCL shows how the subroutine IMFSUBEX schedules an EXEC named
BACKDONE for execution.

//STEPX EXEC PGM=IMFSUBEX,
V4 PARM="SS(SSA1) EXEC(BACKDONE SYST1)"

44 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Example

The following EXEC is scheduled:

/* REXX EXEC */
ARG BACKDONE V1 .

/* __ */
/* DOC GROUP(MVS) FUNC(BKUP) CODE(BK) */
/* DOC DISP(YES) AUTHOR(B&B) */
/* DOC DESC(SEND NOTIFY/LOG FOR A SUCCESSFUL BACKUP) */
/* __ */

"IMFEXEC CMD #SE "VOLUME '"V1' SUCCESSFULLY
DUMPED*,LOGON,USER=(SYSP1,SYSP2)""
"IMFEXEC MSG *VOLUME V1" SUCCESSFULLY DUMPED*®"

EXIT

Figure 8. Externally Initiated REXX EXEC Example

The positional parameters passed to the EXEC-initiated EXEC are shown in the following

table:

Positional | Variable Value Passed Description of Value Passed

Parameter | Name

1 BACKDONE BACKDONE Is the name of the EXEC invoked

2 V1 SYST1 Is the name of the volume serial number
of a DASD

3 : . The period pads the positional
parameters

Describing the Example

The EXEC name@ACKDONE is scheduled in a target subsystem called SSAL. A single
parameter is passed (SYST1) which is a DASD volume serial number. The BACKDONE
EXEC receives a volume serial number of a DASD from the second positional parameter to
IMFSUBEX.

The BACKDONE EXEC first sends a message to two TSO users, SYSP1 and SYSP2,

informing them that the volume backup has been successful and then places a message in the
BBI-SS PAS Journal recording a successful operation.

Chapter 3. Passing Parameters to REXX EXECs in AutoOPERATO$5

End-of-Memory—Initiated REXX EXEC

Use the End-of-Memory EXEC to ensure that critical address spaces do not terminate
unnoticed.

Potential Use

Normally, address space termination can be monitored using standard MVS and JES messages.
However, there are situations when monitoring based on these messages is not sufficient
because an address space may terminate without producing the expected messages. For
example, the expected termination messages may not be produced if the MVS FORCE or
SYSPROG EXIT command is used or when an initiator abends.

The End-of-Memory EXEC allows AutoOPERATOR to monitor address space termination
regardless of how the address space is terminated. This EXEC is scheduled for the following
things when the associated events occur:

Batch jobs Only when the initiator terminates
TSO users When any TSO user is terminated
Started tasks When any started task is terminated

There is only one End-of-Memory EXEC for each AutoOPERATOR subsystem. Each time
one of the above mentioned events occurs, AutoOPERATOR automatically schedules an
EXEC named IMFEOM fif it exists in the SYSPROC concatenation.

Parameters Passed to the EXEC

Two parameters are passed to the End-of-Memory EXEC.

e The first parameter contains the fixed string of *EOM*

* The second parameter contains a character string which can have one of two values:
Parameter value Description
NORMAL Indicates normal address space termination
ABNORMAL Indicates address space was terminated by passing it to RTM

This may happen when using the SYSPROG EXIT command or the
MVS FORCE command. This is not an indication that the address
space abended with a system or user abend code.

46 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Example

This first example shows an EXEC called STRT that is invoked by a Rule (a Rule-initiated
EXEC). The Rule is fired when the JES2 message $HASP373 is issued for jobname
PRODSTC: $HASP373 indicates that the job has started.

/*REXX EXEC */

/* __ */
/* THIS EXEC IS DRIVEN FROM JES2 MESSAGE, $HASP373, FOR STC */
/* PRODSTC ONLY */
/* */
/* EXEC DESCRIPTION: SET VARIABLE ""PRODSTKN"™ TO STOKEN OF PRODSTC */
/* __ */

PRODSTKN = IMFSTOKN
"IMFEXEC VPUT PRODSTKN"

The second EXEC, IMFEOM, is automatically scheduled when any started task or TSO
address space terminates or when a batch initiator abends.Describing the Example

/* REXX */

ARG IMFEOM STATUS .

/* __ */
/* THIS EXEC IS DRIVEN FROM END OF MEMORY EXIT */
/* */
/* EXEC DESCRIPTION: DETERMINE IF ADDRESS SPACE TERMINATING IS */
/* "PRODSTC". IF SO, INFORM THE OPERATOR. */
/* __ */

"IMFEXEC VGET PRODSTKN'
IF IMFSTOKN = PRODSTKN THEN DO
PRODSTKN =7~
"IMFEXEC VPUT PRODSTKN'
IF STATUS = ABNORMAL THEN ,
"IMFEXEC WTO *PRODSTC ENDED ABNORMALLY*®*
END

Figure 9. End-of-Memory—Initiated EXECs Example

Chapter 3. Passing Parameters to REXX EXECs in AutoOPERATOR/

When the STRT EXEC is scheduled, the local variable IMFSTOKN contains an identifier that
uniquely identifies the PRODSTC started task. Since this variable only exists for the life of the
EXEC, STRT saves the IMFSTOKN value in the shared variable pool so that it can be used

subsequently by the IMFEOM EXEC.

Important

If this procedure will be used for more than one address space, you should use a variable
name other than IMFSTOKN in the shared variable pool or else the value IMFSTOKN
might be overridden by the other procedures.

When the IMFEOM EXEC is scheduled, IMFSTOKN refers to the address space that is being
terminated. The IMFEOM EXEC compares IMFSTOKN to the PRODSTKN value saved
previously by the EXEC named STRT. If the values do not match, IMFEOM exits because the
address space that is terminating is not one that is being monitored. If the values do match and
the parameter passed to IMFEOM indicates abnormal termination, then a WTO (write-to-
operator) is issued to notify the operator.

Refer to “TSO Variables Supplied by AutoOPERATOR” on page 54 for more information
about AutoOPERATOR-supplied variables.

48 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Chapter 4. Using Variables in REXX EXECs

This chapter discusses:

Variables and variable pools available to AutoOPERATOR REXX EXECs

Manipulating information between the variable pools

Overview

Complex EXECs must be able to do much more than issue commands and return control to
their callers. An EXEC must be able to request information from AutoOPERATOR (and other
products), compare the information, compare the time elapsed since the last observation, and
effect changes that other EXECs or products carry out.

This type of logic requires the ability to save information, either temporarily or permanently, in
a simple manner so that it can be accessed later by the same EXEC or other EXECs.

To retain this information for EXECs, AutoOPERATOR provides four kinds of variables and
variable pools.

Variable Pool Name

Description

TSO variables

Exist for the life of the EXEC.
This chapter lists:

* AutoOPERATOR-supplied TSO variables
* Modifiable TSO variables
* Non-modifiable TSO variables

LOCAL variables

LOCAL variables are stored in a pool that can be accessed only by the c
EXEC and other EXECs (using IMFEXEC SELECT WAIT(YES)).

rrent

AutoOPERATOR passes information to an EXEC in this pool. It is also used by

AOAnywhere when sharing variables with an invoking EXEC. The LOCAL
variable pool is freed when the EXEC ends and its contents are lost.

Chapter 4. Using Variables in REXX EXECs 49

Variable Pool Name

Description

Two types of GLOBAL
variable pools: SHARED and
PROFILE

Can be saved for later executions of

The use of the expression “GLOBAL
SHARED and PROFILE variables.

the same EXEC or other EXECs.
variables” in this book refers to both

SHARED variables

SHARED variables are stored in a
pool that is accessible to all EXECs i
the BBI-SS PAS . They can be read,
modified, created and deleted by an
number of EXECs or Rules. Since
EXECs can access them
simultaneously, their access should
serialized (see IMFEXEC VENQ and
VDEQ). These variables exist in
storage beyond the life of the EXEC
that created them.

AutoOPERATOR creates a number ¢
SHARED variables that contain
system-specific information.
SHARED variables are accessible tg
the Rules Processor and remain in
memory when the subsystem is
terminated. However, they are lost
across IPLs or when a subsystem is
restarted with the VPOOL=RESET
option.

This chapter lists the
AutoOPERATOR-supplied variables

PROFILE variables

I PROFILE variables are similar to
SHARED variables with the exceptio

that they are persistent across IPLs and

’/their contents are never lost unless
explicitly deleted.

)ePROFILE variables are not accessal
from Rules.

=

le

Note:

cannot exceed 256 characters.

Variable names must be at least 1 and not more than 32 characters in length. The contents of any

variable

AutoOPERATOR also provides four IMFEXEC commands for defining, saving, deleting, and
retrieving variables using the different variable pools:

VDCL

VPUT

VPUTL

VGET

VGETL

VDEL

VDELL

Defines map lists for variables

Save variables to a pool

Saves long variables (up to 32k and 30 characters long) to a pool

Retrieve variables from a pool

Retrieves long variables (up to 32k and 30 characters long) to a pool

Remove variables from pools

Removes long variables (up to 32k and 30 characters long) to a pool

50 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Although three of these commands are similar to three ISPF Dialog commands, they are not
identical. Refer to “Using the IMFEXEC Statements” on page 237 for coding details and
carefully review the differences before using them.

LOCAL, SHARED and PROFILE variables (in this order) impose a cost to processing
overhead. This means that the system uses more resources to preserve the contents of a
PROFILE variable than for a LOCAL variable.

LOCAL, SHARED and PROFILE pool variables each come in two flavors: long and short.
Short variables are limited to 255 characters in length and their names to 32 characters long.
You cannot manipulate a variable with longer content using the IMFEXEC
VGET/VPUT/VDEL statements.

Long variables can be up to 32K in length and have a variable name length up to 30 characters.
These variables are manipulated using the VGETL/VPUTL/VDELL IMFEXEC statements.
Long and short variables are completely independent from each other. A variable that has been
set with the VPUT statement cannot be read with the VGETL statements.

Long variables impose greater processing overhead than short variables. If your code, for
example, has to remember only the names of persons, you should always choose a short
variable. If, however, a variable can foreseeably grow in length beyond the 255 character limit
(say, you might want to concatenation hundreds of volsers into one variable) then you should
use the long variable format.

In addition:

« REXX EXECs cannot use any variables that have not been explicitly retrieved into the
function pool using IMFEXEC VGET(L) statements.

« Avariable with the same name but of different type (long or short) or in different pools
(LOCAL/SHARED/PROFILE) can contain completely separate values.

* A LONG variable (set with the VPUTL statement) cannot be retrieved with a short
variable operation (VGET) even if the contents of the explicit LONG variable does not
exceed the 255 character limit.

For example:

Fred="This is a test”
"IMFEXEC VPUT FRED
"IMFEXEC VGETL FRED"
These statements yield:

Fred="My name is Fred*
"IMFEXEC VPUT FRED"

Fred="My name is Flintstone"
"IMFEXEC VPUTL FRED"

In this case, the variabfared exists both as a long and a short variable, with different
contents.

Chapter 4. Using Variables in REXX EXECs 51

The following table lists where you can find more information about variable pools in this

chapter.

To read more about... See page...
TSO pools 53
Using TSO modifiable variables 61
Using TSO non-modifiable variables 61
LOCAL pools 61
SHARED pools 63
PROFILE pools 66
Saving data to a pool 67
Retrieving data from a pool 69
Sharing variables between EXECs 70

52 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Using a TSO Variable Pool

A TSO variable pool is created when an EXEC starts and is deleted when the EXEC ends. The
variables in the TSO variable pool can be created in one of two ways:

e Assigning a variable:

For example, the statement:

1=1

creates a TSO variable | with a value of 1 in the pool.
e Using IMFEXEC VGET commands

To access a variable from the LOCAL, SHARED, or PROFILE pools, you must use the
IMFEXEC VGET command in the EXEC and move the variable into the TSO pool. The
REXX EXEC can perform operations on the value of the variable only when it is in the
TSO variable pool. Refer to “WGET” on page 390 for information on coding an
IMFEXEC VGET statement.

TSO variables also exist as:

e AutoOPERATOR-supplied variables

e TSO-supplied modifiable and non-modifiable control variables

e Variables that are substituted into the positional parameters on a REXX ARG statement

Refer to “Passing Data” on page 24 for more information about the ARG statement.

The following sections list the AutoOPERATOR-supplied variables and the modifiable and
non-modifiable variables supplied by TSO.

Chapter 4. Using Variables in REXX EXECs 53

TSO Variables Supplied by AutoOPERATOR

The following lists the TSO variables provided by AutoOPERATOR:

application.

Variable Name Description Applicable
specifically for
which EXEC
type

IMFACCTG Contains all accounting fields for a particular event. The accountingRule-initiated

field values are separated by blanks. Maximum length is 142. EXECs only

IMFALID The alarm ID associated with an alarm created by MainView Alarm Rule-initiated

Manager. EXECs only
IMFALPRI The user-assigned priority of the alarm. Possible values are: Rule-initiated
EXECs only
1 Critical
2 Major
3 Minor
4 Warning
5 Informational
6 Clearing

IMFALQID The name of the queue to which the alarm was assigned. Rule-initiate
EXECs only

IMFALRM Contains either Y (sound an alarm) or N (do not sound an alarm). Rule-initiate
EXECs only

IMFCC The condition code set for each IMFEXEC statement. All EXEC types

IMFCC =00 Normal completion.

IMFCC =04 Warning condition, not necessarily an error.
IMFCC =08 Exception condition or command not found.
IMFCC =12 Error condition. Did not complete operation.
IMFCC =16 Error condition.

IMFCC = 20 Severe error condition.

Refer to the specific IMFEXEC statement for the exact codes.

IMFCNTXT The name of the context of the alarm. Rule-initiated
EXECs only

IMFCONID Console ID of the message, if message was issued for a specific | Rule-initiated

console. Valid only for messages captured through the Rule Procgs&XECs only

54 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Variable Name Description Applicable
specifically for
which EXEC
type
IMFCONNM Console name to which the WTO was issued. Valid only for MVS SPRule-initiated
and above. EXECs only
IMFCONNM may be used to identify the origin of an MVS command.
The contents of the variable (by origin) are:
Origin IMFCONNM Value
Rule Internal
SDSF TSO user ID that issued the command
Console Console Name where the command was issued

IMFDAY Three-character day of the week: MON, TUE, WED, THU, FRI, SATAIl EXEC types
SUN.

IMFDDNAM Contains the DDNAME specified by the user to generate an externaRule-initiated
events (EXT event type). EXT events are generated by using the | EXECs only
SUBSYS= parameter on a DD statement in JCL. Refer to “EXT
Events” in theMAINVIEW AutoOPERATOR Basic Automation Guide
for more information about EXT events.

IMFDOMID The DOM ID associated with a WTO that initiated an EXEC. Rule-initiated
EXECs only

IMFEID The EXEC identification number, 1 to 99999, assigned to each All EXEC types

execution by the EXEC manager.
The EXEC MANAGER will not assign the same number to two
EXECs in the running or deferred queues, except an EXEC selectged
with WAIT=(YES) has the same IMFEID as the calling EXEC.
IMFENAME Name of EXEC. All EXEC types
IMFEROUT A list of routing codes that were assigned to the WTO that triggered tRaile-initiated
EXEC, suchag 2 5 9. This variable is defined only for EXECs EXECs only
initiated as a result of a WTO. IMFEROUT supports return codes up to

128.

Chapter 4. Using Variables in REXX EXECs 55

Variable Name

Description

Applicable
specifically for

i

which EXEC
type
IMFETYPE The event type that caused the Rule to fire. If a Rule invokes an EXERule-initiated
IMFETYPE contains the value from the Rule that invoked the EXECEXECs only
Possible values for IMFETYPE are as follows:
« MSG
« CICS
« CMD
« JRNL
« IMS
* ALRT
« DB2
« TIME
« ALRM
o EXT
* VAR
« MQS
+ JES3
For more information about these event types, refer to “Describing
Events” in theMAINVIEW AutoOPERATOR Basic Automation Guide
IMFEVFRD The number of Rules that have fired for a specific event. Rule-initiateg
EXECs only
IMFGROUP The RACF group ID for the address space that issued the message.Rilile-initiated
group ID is taken from the GROUP= parameter on the job card. EXECs only
IMFJCLAS Job class name from the job card of the batch job that has generatedRbke-initiated
message. EXECs only
IMFINUM The JES job number of the job, STC, or TSU that issued the messag&lie-initiated
is a fixed length five-digit or a variable length value depending on th&XECs only
setting of the IMFINUM option in member AAOPRMxx. IMFINUM
can also contain blanks (one or five characters as appropriate) for
WTOs that are issued by non-JES tasks, such as a STC started upder
MSTR.
When IMFINUM=5 (the default setting) and the job number is greater
than 99,999 (for example, T0100000, S0999999, etc.) are encountered,
IMFINUM will be null (zero length).
IMFITYPE Type of job issuing message: Rule-initiated
EXECs only
J Batch Job
T TSO User
S Started Task
IMFLPROD The name of the product associated with the alarm. Rule-initiateg
EXECs only

i

56 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

)|

Variable Name Description Applicable
specifically for
which EXEC
type

IMFLTYPE A literal value associated with the alarm; possible values can be | Rule-initiated
START or STOP. EXECs only

IMFLUSER The user-specified user ID associated with the alarm. Rule-initiate
EXECs only

IMFMPFAU Contains the value of a message from the MPF AUTO keyword. | Rule-initiated
EXECs only

Use this variable to determine the value of the MPF AUTO keyword for
a message.

IMFMPFSP Contains the value of a message from the MPF SUP keyword. Rule-initiated

EXECs only
Use this variable to determine the value of the MPF SUP keyword for a
message.

IMFMSTYP Contains a 2-character variable for the message type. This variableRaile-initiated
only for the CMD and MSG event types. Valid values for the first | EXECs only
character are:

N A regular WTO

W A regular WTOR

M A major line of a multi-line WTO (MLWTO)
Valid values for the second character are:

C Command

R Command response

IMFNOL Number of lines in WTOR that caused the EXEC to be invoked or thall EXEC types
number of lines returned from a service.

This value is limited to 9999 lines for Rule-initiated EXECs and for
data returned by IMFEXEC CMD with response.

IMFOASID Originating Address Space ID (ASID) of the message. For IMFEOM, Rule-initiated
is set to the ASID that is being terminated. For ORIGIN=JRNL, it is sEXECs only
to the subsystem ASID name.

IMFODATE Date when the message or alarm was issued. Valid only for messagesle-initiated
captured through the Rule Processor. EXECs only
The date format is in Julian calendar format; for example: 95.100,
where:

95 Are the last two digits of the year 1995.
100 Is the 100th day of the year. In a non-leap-year, this is equal|to
March 10.

IMFODESC A list of descriptor codes assigned to the WTO that triggered the | Rule-initiated

EXEC, such as 2 11. This variable is defined only for EXECs initiafeXECs only

as a result of a WTO.

Chapter 4. Using Variables in REXX EXECs 57

Variable Name Description Applicable
specifically for
which EXEC
type

IMFOJOB For WTOs, IMFOJOB contains the job or started task that issued thall EXEC types

WTO.
For CICS messages, IMFOJOB contains the CICS region name that the
subsystem issued the message for, which is useful when monitoring
multiple CICS regions with one BBI-SS PAS .
For DB2 messages, IMFOJOB contains the DB2 region name thaf the
subsystem issued the message for, which is useful when monitoring
multiple DB2 regions with one BBI-SS PAS.
For IMS messages, IMFOJOB contains:
* The IMS job name for IMS MTO messages
» The IMS job nhame for commands (and their responses) entered
from AutoOPERATOR
e The originating LTERM for commands (and their responses)
entered from an IMS LTERM
For BBI-SS PAS Journal messages issued by an EXEC, IMFOJOB
contains the user ID of the person who invoked the EXEC.
For Journal messages issued by MainView for DB2, IMFOJOB
contains the name of the DB2 Region for which the message was
issued.
For Time-initiated EXECs, IMFOJOB contains the user ID associajed
with that EXEC. This may be the user ID passed on the command|or it
may default to the value of the AUTOID keyword specified in
BBPARM member BBIISPOO.
&IMFX0OJOB Contains the name of the original job or started task that requesteg KIEEXEC types
WTO to be issued by another address space. initiated by a
MSG type rule
The contents of IMFXOJOB are only meaningful if the WTO is issued
by another address space, otherwise its contents are identical to
IMFOJOB.

IMFOQID CICS transient data queue name if source of message is CICSTD Rule-initiat

EXECs only

A1%

58 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Variable Name

Description

Applicable
specifically for
which EXEC
type

IMFORGN

Origin of EXEC-Job name/USERID causing EXEC to be invoked.

For EXECs triggered by the Rule Processor, IMFORGN contains {
BBI-SS PAS ID. This is so that EXECs invoked on remote systems
are triggered by message filters on the local system can use authg
services, such as SYSPROG services.

Security checking is done against a BBPARM member in the remg

system with the name of the BBI-SS PAS ID. See “Determining the

Origin of a Command or EXEC” on page 91 for a discussion abou
using IMFORGN to determine the origin of an EXEC across BBI-S
PASs.

All EXEC types
he

hat
rized

S

IMFORGSS

The BBI subsystem ID of the BBI-SS PAS that originated an EXEQ
originated locally, IMFORGSS is the same as QIMFID.

See “Determining the Origin of a Command or EXEC” on page 91 fg
discussion about using IMFORGN to determine the origin of an EX
across BBI-SS PASs.

. Ml EXEC types

ra
EC

IMFOROUT

A list of routing codes that were assigned to the WTO that triggered
EXEC, suchag 2 5 9. This variable is defined only for EXECs
initiated as a result of a WTO. IMFOROUT supports return codes u
16.

tReule-initiated
EXECs only
D to

IMFOTIME

Time when the message was issued. Valid only for messages (als
known as events) captured through the Rule Processor.

The valid form of the variable is hh:mm:ss for all Rule event types
except for the MSG event type. For MSG events, the valid form of
variable is hh.mm.ss.

For the ALRM events, the time represents the time the exception
occurred.

b Rule-initiated
EXECs only

the

IMFPCMD

The PCMD associated with the alarm.

Rule-initiated
EXECs only

IMFPOST

A 1 to 255 character code received from an EXEC that issues the

All EXECs

IMFEXEC POST command against an ECB with the same name that

the current EXEC is waiting on.

IMFPRIO

Contains the dispatching priority of the currently running EXEC afieAll EXECs

the IMFEXEC CHAP command has been issued.

IMFRC

The return code set by a called EXEC with WAIT(YES) or the retu

nEXEC-initiated

code set by a non-AutoOPERATOR command or program. Refer toEXECs only

“Understanding Completion Codes for EXEC-Initiated EXECs with

WAIT(YES) and User Written Programs” on page 354 for a more
detailed discussion.

Chapter 4. Using Variable

s in REXX EXECs 59

Variable Name Description Applicable
specifically for
which EXEC
type

IMFREPLY Reply ID of the WTOR message. Valid only for messages captured Rule-initiated

through the Rule Processor. EXECs only

IMFRLFRD The number of times a Rule was fired. Rule-initiated
EXECs only

IMFRLID The Rule identifier that fired an EXEC. Rule-initiated
EXECs only

IMFRLMAT The number of times the Rules search criteria was matched. Rule-initiated
EXECs only

IMFRLSET The name of the Rule Set the Rule belongs to. Rule-initiateg
EXECs only

IMFRLSTA The Rule status: Rule-initiated
EXECs only

TEST Indicates that the status of the Rule that invoked the EXEC
is in an TEST state.

ACTIVE Indicates that the status of the Rule that invoked the EXEC
is in ACTIVE state.

IMFRUSER The RACF user ID for the address space that issued the message. Rtle-initiated

user ID is taken from the USER= parameter on the job card. EXECs only

IMFSCOPE The name of the scope associated with the alarm. Rule-initiated
EXECs only

IMFSTOKN The Address Space STOKEN. This hame is unique for the life of {hRule-initiated

IPL. EXECs or
End-of-Memory
initiated EXECs

IMFSYSID Originating job name Rule-initiated
EXECs only

For CICS messages, IMFSYSID contains the BBI started task name.
IMFTEXT The character text that caused the EXEC to be scheduled. All EXEC types
IMFTOKEN Token ID of the message. Same as hardcopy ID. Used to attach | Rule-initiated
MLWTO Minor/Major Lines. Valid only for messages captured EXECs only
through the Rule Processor.

IMFVIEW The name of the view associated with the alarm. Rule-initiated
EXECs only

IMFWTDOM The DOM ID associated with a WTO issued by IMFEXEC WTO | All EXEC types

command.

60 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Variable Name

Description Applicable
specifically for
which EXEC

type

IMFWTCON

Created when a reply is successfully received. The eight-character
name of the console from which the reply to the WTOR was entered.

One of the possible uses for the IMFWTCON variable is that it enalles
you to direct reply WTOs specifically to the console where the user
entered the reply to this WTOR.

Note: These variables are carried over to the TSO pool created for an EXEC called using the IMFEXEC
SELECT command with parameter WAIT(YES) specified.

See “Invoking EXECs Synchronously with IMFEXEC SELECT(EXEC) WAIT(YES)” on page 78 fd
more information about EXEC-initiated EXECs executing within the same thread.

=

TSO Modifiable Control Variables

AutoOPERATOR REXX EXECs support the following special REXX variables that are
modifiable.

Variable Name

Description

RC The return code from any executed host command.
If IMFEXEC detects an error, it sets the REXX TRACE Negative condition to TRUE. As a
result, the incorrect IMFEXEC statement is traced. After echoing the incorrect IMFEXEC
statement to the BBI-SS PAS Journal, REXX issues its own trace message, which is grefixed
by +++,

RESULT The value of an expression returned by the RETURN command.

SIGL The line number of the statement currently executing when the last transfer of control fo a

label took place.

TSO Non-Modifiable Control Variables

The TSO/E REXX language itself does not provide the non-modifiable variables that the
CLIST language does. Instead, built-in and external functions are used to obtain the values and
assign them to variables. Refer to the section describing “Using TSO/E Functions for REXX
EXECs” on page 19 and “Using TSO/E REXX Commands in REXX EXECs” on page 20 in

this manual.

Using LOCAL Variables and Pools

This pool is created when an EXEC is assigned to a thread and is deleted when the thread
terminates. Variables in this pool are created by:

¢ Using the IMFEXEC command VPUT to move TSO variables into the LOCAL pool

Chapter 4. Using Variables in REXX EXECs 61

e Using IMFEXEC CMD with the RESPONSE capability to issue MVS commands (refer to
“CMD (MVS Version with Response through X-MCS Consoles)” on page 310) and by
invoking SYSPROG services using the IMFEXEC RES command

The LOCAL pool is useful for passing variables between EXECs executing within the same
thread (for example, EXEC-initiated EXECs where WAIT(YES) is coded). For example, the

calling EXEC includes an IMFEXEC VPUT statement to put variables from the TSO pool into

the LOCAL pool. Then, the called EXEC can operate on those variables by using IMFEXEC
VGET to get those variables from the LOCAL pool into the TSO pool; for example:

N=1 /* creates a TSO variable in TSO pool*/
"IMFEXEC VPUT N LOCAL™ /* IMFEXEC VPUT cmd places variable in LOCAL pool*/

This example stores variables from the TSO pool to the LOCAL pool.

Local variables are not available to EXECs invoked by the REXX CALL function.

62 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Using SHARED Variables and Pools

SHARED variables are a pool of GLOBAL variables maintained in CSA. Variables in this
pool are:

e Created by a user who uses the IMFEXEC VPUT statement in an EXEC

For example:
N=1 /* creates a TSO variable in TSO pool*/
"IMFEXEC VPUT N SHARED"™ /* IMFEXEC VPUT cmd places variable in SHARED

pool*/
This example stores variables from the TSO pool to the SHARED pool.
* AutoOPERATOR-supplied

AutoOPERATOR supplies a set of read-only SHARED variables that begin with the
prefix Q.

If you create your own new variableky not use a prefix of Q.

If a BBI-SS PAS warm start is performed: The SHARED variable pool is kept, and all
variables have the same values as before the warm start.

If a BBI-SS PAS cold start is performed: The SHARED pool will be reseinly if you
specifythe RESET parameter in your BBI-SS PAS JCL. The default is NORESET. Refer to
“Cold Start of a BBI-SS PAS” in thRlIAINVIEW Administration Guidéor more information

on resetting the variable pool at BBI-SS PAS cold start.

You can also reset the pool by issuing the statement:
"IMFEXEC VDEL ALL SHARED™

in an EXEC. This deletes all the variables from the SHARED pool except the
AutoOPERATOR-supplied variables.

To display the contents of the variable pool, use the BBI control command DISPLAY VPOOL

(parameters). Refer to th@AINVIEW Administration Guidéor more information about the
BBI control commands.

Serializing Variables

During the time between the VGET and the use of the variable, the value in the SHARED pool
may have been modified by another EXEC. EXEC authors are responsible for ensuring
variable integrity through the consistent use of ENQ and DEQ facilities throughout the
automation procedures.

Refer to “Sharing Variables while Multi-Threading EXECs” on page 70 for more information.

The following lists AutoOPERATOR-supplied SHARED variables that can be used with the
IMFEXEC VGET command in an EXEC but cannot be used with IMFEXEC VPUT.

Chapter 4. Using Variables in REXX EXECs 63

AutoOPERATOR-Supplied SHARED Variables

ever

never

Variable Description
QAOREL Contains a 5-character string indicating the release of AutoOOPERATOR
The string takes the format.m where:
v Is the version level
r Isthe release level
m s the modification level
QIMFID The BBI subsystem ID of this BBI-SS PAS.
QIMGSTA (IMS & DB2 Performance Products only)
The status of BBI-SS PAS Image logging as ACTIVE or INACTIVE.
QIMGSUF (IMS & DB2 Performance Products Only)
The suffix of the current or last active BBI-SS PAS Image data set. If logging has 1
been initialized, the value is null.
QIMSID The IMSID of the IMS/VS being monitored. This IMSID is available only when
IMS/VS is active. This IMSID is the same as the IMS/VS identified by QIMSNAMH.
QIMSNAME The jobname of the IMS/VS being monitored by this BBI-SS PAS.
QIMSREL Contains the IMS release number.
QIMSSTA The status of IMS/VS (ERE, WARM, COLD, or INACT).
QJINLSTA The status of BBI-SS PAS Journal logging as ACTIVE or INACTIVE.
QJINLSUF The suffix of the current or last active BBI-SS PAS Journal data set. If logging has
been initialized, the value is null.
QSMFID The SMF system ID of the system where the EXEC is running.
QSSNAME Contains the jobname of the SS address space.

AutoOPERATOR COMMAND/POST Extension Shared Variables

The following are REXX shared variables that are used when performing a GME connection:

Variable

Description

QGMADDR.GMEID

IP address o&6EMEID (GME node).

QGMTGTHB.GMEID

Target heartbeat interval in minutes that AutoOPERATOR waits before sending
another heartbeat to target “gmeid”.

QGMLCLHB.GMEID

Local heartbeat interval in minutes between AutoOPERATOR's receiving of
heartbeats from target “gmeid”.

QGMLPORTGMEID

Listener port for the web server. Zero means no listener port is specified.

QGMMSGLGMEID

Maximum length of a message accepted from the GME node.

64 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Variable

Description

QGMNAME.GMEID

Host name of the local GME node.

QGMRTCGMEID

Maximum connection retry count for the GME node.

QGMRTI.GMEID

Connection retry interval for the GME node in minutes.

QGMSTATGMEID

Status ofGMEID (ACT, INACT, or DISCO).

QGMTRAPPGMEID

Minimum level of Application trace records to be senGMEID.

QGMTRGMEGMEID

Minimum level of GME trace records to be sentGVEID.

QGMTRSECGMEID

Minimum level of Security trace records to be senGYEID.

QGMWND.GMEID

Maximum number of messages that require acknowledgements s&ktiEtD without
waiting for previous messages to be acknowledged. Zero indicates no maximum|.

Chapter 4. Using Variables in REXX EXECs 65

Using the PROFILE Pool

The PROFILE pool is a pool of GLOBAL variables maintained in the extended private area of
the BBI-SS PAS and in a checkpoint data set named BBIVARS referred to by the DD
statement in the BBI-SS PAS JCL.

Variables in this pool are created by:
* A user who uses the IMFEXEC VPUT statement in an EXEC

For example:

N=1 /* Creates a TSO variable in TSO pool*/
"IMFEXEC VPUT N PROFILE™ /* IMFEXEC VPUT cmd places variable in
PROFILE pool*/

This example stores variables from the TSO pool to the PROFILE pool.

The variables are written to the BBIVARS data set every time the IMFEXEC VCKP command
is issued or when an EXEC that updated any PROFILE variable is terminated.

This variable pool is reconstructed from the BBIVARS data set whenever the BBI-SS PAS is
restarted. Each variable then contains the value last VPUT into it prior to the BBI-SS PAS
termination. Variable integrity is maintained across IPLs and even if the BBI-SS PAS abends,
except where:

e The BBI-SS PAS abends after a variable is VPUT to the PROFILE pool but before the
EXEC ends

* Before an IMFEXEC VCKP command is issued for the variable

Under these circumstances, the variable in the PROFILE data set or disk would be that of the
last completed update.

Serializing Variables

During the time between the VGET and the use of the variable, the value in the PROFILE pool
may have been modified by another EXEC. EXEC authors are responsible for ensuring
variable integrity through the consistent use of ENQ and DEQ facilities throughout the
automation procedures.

Refer to “Sharing Variables while Multi-Threading EXECs” on page 70 for more information.

66 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Saving Data in a Variable Pool

Potential Use

Complex EXECs may use many input sources, such as performance monitors and subsystem
messages, to create automation procedures. These procedures can depend on several factors
that vary over time. An example of these factors might be the name of the current shift operator
or the name of the on-call IMS support person.

Variable pools provide a useful means of saving this type of information for use by several
automation procedures.

It is useful to localize site-dependent automation information (such as names and phone
numbers of key personnel) in variables for all automation procedures to use. A simple EXEC
can be written to set these variables whenever the variable pool is reset.

Describing the Example

This example shows an EXEC that is used to set site-dependent automation information in the
PROFILE variable pool.

Information about key personnel is hardcoded in the EXEC (for example: name, user ID, and
telephone numbers). The EXEC creates LOCAL variables for this information with the
variables:

« NAME

e USERID

« WORKPHON
+« HOMEPHON
« PAGER

The EXEC then places the variables into the PROFILE pool under one variable name,
IMSPROG.

Chapter 4. Using Variables in REXX EXECs 67

Example

/* REXX */

/ /
/* DOC GROUP(MVS) CODE(J2) */
/* DOC DISP(YES) AUTHOR(B&B) */
/* DOC DESC(SAVING VARIABLES TO PROFILE POOL) */
Y i i /
NAME = "JOHN_SMITH"

USERID = "JJH1"

WORKPHON = "800/323-2375"

HOMEPHON = "312/666-1234"

PAGER = ®312/999-9999"

"IMFEXEC VDCL IMSPROG LIST(NAME USERID WORKPHON HOMEPHON PAGER)"
"IMFEXEC VPUT IMSPROG PROFILE"

ENDEXIT: END

Figure 10. Saving Variables in a Variable Pool

68 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Retrieving Data from a Variable Pool

Potential Use

This section describes how and why you can retrieve information from a variable pool with
EXECs.

There are many instances when you might want to create EXECs to notify individuals or
groups of individuals about serious operations situations. It is advantageous to create these
notifications in a general way so that they refer to a title or a group name, but you can also
write an EXEC that notifies specific individuals by name when a situation occurs.

Variable pools provide this capability by allowing you to store variable data such as names and
phone numbers and retrieve them later.

Describing the Example

Example

This EXEC retrieves the name, user ID, and telephone numbers of the IMS systems
programmer from the PROFILE pool where it was saved in the example on page “Example” on
page 68.

The VGET statement retrieves the variable IMSPROG from the PROFILE pool. Because it
was saved and retrieved as a list variable, the data is mapped in the variables NAME, USERID,
and so on.

The data retrieved from IMSPROG is used to fill in the variable fields needed in the ALERT
command. Finally, a return code is set to zero and the EXEC exits.

/* REXX EXEC */

/ /
/* DOC GROUP(MVS) CODE(J2) */
/* DOC DISP(YES) AUTHOR(B&B) */
/* DOC DESC(RETRIEVING VARIABLES) */
/ /

"IMFEXEC VDCL IMSPROG LIST(NAME USERID WORKPHON HOMEPHON PAGER)™
"IMFEXEC VGET IMSPROG INTO(IMSPROG) PROFILE™
"IMFEXEC ALERT IMSPROG"TIMEQ™",
""" IMSPROG IS NEEDED. CALL "NAME™ AT /N "WORKPHON'" OR",
""""HOMEPHON" """ "FUNCTION(ADD) PRI(MAJOR) QUEUE(IMSPROG)"
"IMFEXEC EXIT CODE(0)"
EXIT

Figure 11. Retrieving Variables in a Variable Pool Example

Chapter 4. Using Variables in REXX EXECs 69

Sharing Variables while Multi-Threading EXECs

Potential Use

If you are allowing concurrent execution of multiple EXECs (see “Multi-Threading EXECs to
the Normal or Priority Queue” on page 75), then GLOBAL variables might be accessed and
modified by several EXECs concurrently. AutoOPERATOR does not serialize variable usage
between IMFEXEC VGET and VPUT commands. You are responsible for the contents of
your SHARED or PROFILE pool. The IMFEXEC VENQ and VDEQ statements are provided
to serialize any resource. They are especially useful for serializing the use of variables.

You must be careful if a GLOBAL variable can be updated by different EXECs concurrently
or if an EXEC that updates a GLOBAL variable executes multiple times concurrently due to
the use of multi-threading. This could eventually lead to disastrous results.

This example EXEC updates GLOBAL variables; it uses a locking mechanism provided by the
IMFEXEC VENQ command to avoid variable corruption.

Describing the Example

Example

This EXEC serializes a resource named ABENDCNT. The site that uses this EXEC has set a
standard saying that GLOBAL variables are serialized using a resource name that is identical
to the variable name. All EXECs within the site must conform to the standard or variable
integrity might not be maintained.

The EXEC obtains an exclusive ENQ on the resource, reads the variable from the SHARED
pool, performs some operations on the variable, saves the variable back in the SHARED pool,
releases the resource, and exits.

/* REXX EXEC */

/* __ */
/* DOC GROUP(AOS) FUNC(AOSAMP) DESC(USING VENQ AND VDEQ) */
/* DOC DISP(YES) AUTHOR(JAC) */
/* __ */

"IMFEXEC VENQ "ABENDCNT®" EXC
IF IMFCC NE O THEN EXIT(16)
"IMFEXEC VGET ABENDCNT"

ABENDCNT=ABENDCNT+1
"IMFEXEC VPUT ABENDCNT"
"IMFEXEC VDEQ "ABENDCNT""*
IF IMFCC NE O THEN EXIT(16)
"IMFEXEC EXIT CODE(0)"

Figure 12. Using VENQ and VDEQ to Serialize Variables

70 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

| Rule-Initiated EXECs Initiated by MVS Multi-Line or Multi-Segment

Messages

Potential Use

Rule-initiated EXECs fired by multi-line WTOs or multi-segment message can access only the
first line or segment of the MVS or IMS message with symbolic parameters on the PROC
statement. For more information about Rule-initiated EXECSs, refer to “Rule-Initiated REXX
EXECs” on page 29.

To access the additional lines and segments in the MVS or IMS message, the EXEC must use
the IMFEXEC VGET statement to create LOCAL variables for LINE1 through LINExxxx
(depending on the number of lines of the WTO).

The actual number of lines or segments in the MVS or IMS message is stored in the TSO
variable IMFNOL. If you have five lines, then IMFNOL=5.

This section describes how to handle accessing the additional lines of information from multi-
line WTOs or multi-segment messages.

This example shows an MVS multi-line WTO that fired a Rule-initiated EXEC:

JOB01766 1EF4501 JDB1ABND - ABEND=SOC1 UOOOO REASON=00000001 984
984 TIME=10.51.34

Describing the Example

Example

In this example, the ARG statement does not contain any symbolic parameters because the first
line of the message is retrieved from the LINEO1 variable.

However, in general, the first line could also be retrieved using symbolic parameters (such as
in Rule-initiated EXECSs). This example demonstrates this process. The EXEC retrieves all
lines of IEF4501 and writes the output of this message to the BBI-SS PAS Journal.

/* REXX EXEC */

/ /
/* DOC GROUP(AOS) FUNC(AOSAMP) DESC(RETRIEVING MULTILINE WTO) */
/* DOC DISP(YES) AUTHOR(JAC) */
/ /

DO I = 1 to IMFNOL
"IMFEXEC VGET LINE"I'™ LOCAL™
"IMFEXEC MSG ""VALUE("LINE"I)"*""
END

Figure 13. Multi-Line WTO EXEC Example

Chapter 4. Using Variables in REXX EXECs 71

72 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Chapter 5. Controlling EXEC Execution

This chapter discusses how to:

» Schedule EXECs to be run

e Schedule an EXEC that waits for another EXEC to complete (synchronous execution)
* Invoke an EXEC

« Monitor and control EXEC execution using BBI control commands

e Code an EXEC to display CPU consumption

Scheduling EXECs

Each EXEC represents a unit of work that needs to be completed. Just as any system that
handles requests to complete work, AutoOPERATOR provides scheduling facilities for
EXECs. EXECS are queued for execution to either:

e The Normal queue

e The Priority queue

Defining Threads

When an EXEC is scheduled to either the Normal or Priority queue, it waits for a server, called
athread, to become available. The number of threads available to the Normal and Priority
queues are defined by the installation (see “Multi-Threading EXECs to the Normal or Priority
Queue” on page 75).

An EXEC remains assigned to a single thread until the EXEC terminates. In a single thread,
only one EXEC can be actively running at any one time. Multiple EXECs can execute under
the same thread: this is callgghchronous executionRefer to “Invoking EXECs
Synchronously with IMFEXEC SELECT(EXEC) WAIT(YES)” on page 78 for more
information.

Scheduling EXECs to the Normal Queue

By default, all EXECs (ALERT-initiated, Time-initiated, and so on) are scheduled through the
Normal queue regardless of how they are invoked. The EXEC executes immediately if there is
a thread available, otherwise it waits until one becomes available. The default setting is one
thread for the Normal queue.

Chapter 5. Controlling EXEC Execution 73

Scheduling EXECs to the Priority Queue

The Priority queue is for EXECs that must not wait for a long backlog of processing. To send
an EXEC to the Priority queue, you must identify the EXEC in either of two ways:

e Specify the name of the EXEC in BBPARM member AAOEXP00

¢ Use the PRI(HI) parameter of the IMFEXEC SELECT command

Refer to “SELECT” on page 351 for more information about how to code the IMFEXEC
SELECT command.

Both these methods are described in this chapter.

Naming the EXEC in BBPARM member AAOEXP00: In BBPARM member
AAOEXPOQ0, the EXEC= parameter allows you to specify the names of EXECs that will
automatically receive high priority status. TMAINVIEW AutoOPERATOR Customization
Guidecontains information for BBPARM member AAOEXPOO.

Example 1: BBPARM member AAOEXPQO contains the statement:
EXEC=THREE

This parameter specifies that an EXEC nameREE is queued to the Priority queue whenever
it is invoked and regardless of how it is invoked (for example, Rule-initiated, ALERT-initiated,
and so on).

The exception to this situation is for EXEC-initiated EXECs where an EXEC is invoked with
the IMFEXEC SELECT statement. See Example 2 on this page for clarification.

Example 2: If you use the IMFEXEC SELECT statement to schedule an EXEC that is
named in BBPARM MEMBER AAOEXPO00, you must still code the parameter PRI(HI) to
have the EXEC scheduled to the Priority queue.

To schedule an EXEC named in BBPARM member AAOEXPO00 with IMFEXEC SELECT,
code:

IMFEXEC SELECT EXEC(THREE XYZ1 XYZ2) PRI(HI)
EXEC THREE executes immediately on the Priority queue if there is at least one thread
available. If there is no Priority thread available, then the EXEC waits until a Priority thread is

available.

You must restart the BBI-SS PAS to pick up new EXEC names added to AAOEXPOQO.

74 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Using the IMFEXEC SELECT Statement and the PRI(HI) Parameter: You can use

the PRI(HI) parameter with the IMFEXEC statement to schedule an EXEC to the Priority
Queue. To do this, code the PRI(HI) operand on the IMFEXEC SELECT command that calls
the EXEC.

For example; the following statement:
IMFEXEC SELECT EXEC(FOUR XYZ1 XYZ2) PRICHI)
schedules EXEEOUR for execution on the Priority queue.

EXEC FOUR executes immediately if there is at least one Priority thread available. If no
Priority thread is available, then the EXEC waits until a Priority thread is available.

EXECs can be added dynamically to libraries in the SYSPROC concatenation so you do not
have to restart the BBI-SS PAS if you use this method to schedule priority EXECs but you
must issue theRESET BLDL SYSPROC command.

Multi-Threading EXECs to the Normal or Priority Queue

Define multiple threads for the Normal queue and the Priority queues in the BBPARM
member AAOEXPO0O. This allows concurrent execution of multiple EXECs. The following
table shows how to do this.

Queue Name

Parameter Name Example

Normal queue

MAXNORM= For example, the parameter statement:

Specify the number of threads on| MAXNORM=10

the MAXNORM= statement in
BBPARM member AAOEXP0OO defines 10 threads for the Normal queue and 10 EXECs

can run concurrently in the Normal queue.

Priority queue

MAXHIGH= For example, the parameter statement:

Specify the number of threads on| MAXHIGH=5

the MAXHIGH= statement in
BBPARM member AAOEXP0OO defines five threads for the Priority queue and five

EXECs can run concurrently in the Priority queue.

If you are operating with MAXNORM or MAXHIGH set to greater than one and then want to
reset MAXNORM=1, you must ensure that no automation procedures are dependent on the
concurrent execution of several EXECs.

CAUTION:
Multi-threading EXECs requires additional virtual storage in the BBI-SS PAS address
space. If virtual storage is insufficient, the SS will fail with an x78 abend.

Multi-threading EXECs may also require variable serialization using ENQ/DEQ logic. Refer
to “Sharing Variables while Multi-Threading EXECs” on page 70 for more information.

Chapter 5. Controlling EXEC Execution 75

Using EXEC Threads and Their Effect on Performance

BMC Software recommends that all automation be done within a Rule (or set of Rules)
whenever possible. This is both for performance and storage considerations. Rules are faster
and use less resources. However, not all automation can be done within Rules. The following
information and/or recommendations offers assistance in tuning your automation for use with
EXECs.

AutoOPERATOR is shipped with the following default values for MAXHIGH and
MAXNORM EXEC threads. When installed with AutoCustomization:

* MAXNORM=5
e MAXHIGH=5

When using BBPARM member AAOEXPOO as it is shipped with AutoOPERATOR, the
settings are:

* MAXNORM=1
e MAXHIGH=5

Itis necessary to understand of the two types of EXEC threads, MAXNORM and MAXHIGH.
EXECs are normally considered batch work. This batch work may occasionally get backed up.
You can control the maximum number of queued EXECs with the MAXNORMQ and
MAXHIGHQ fields in BBPARM member AAOEXPQO0.

Because not all automation can be done with Rules, AutoOPERATOR provides a way of
scheduling higher priority automation within an EXEC. This is where the Priority EXEC
thread comes into use. AutoOPERATOR intends that the Priority queue does not get backed
up (or it should back up much less). Therefore, the default MAXHIGH value shipped in the
sample BBPARM member AAOEXPOQO is much higher than the value for Normal EXECs
(MAXNORM).

Note: When tuning automation through EXECs, you should note that the actual dispatching
priority of Priority EXECs is the same as a Normal EXEC.

These Priority EXECs compete for CPU on the same dispatching priority as NORM EXECs.
The concept of a Normal and Priority EXEC queue is designed as a method to have 2 queues,
where one is used less and therefore, scheduled faster.

For example, if you have MAXNORM=5 and MAXHIGH=5 and currently have 10 Normal
EXECs scheduled, you would have 5 currently running and 5 queued up to run. If you then
want to schedule a new EXEC, if it was Normal it would be queued up behind the other 5, but
if it was Priority, it runs immediately.

It is also important to know that “more is not faster”. Using more EXEC threads means more
tasks for MVS to manage. The CPU overhead goes up because there are more EXEC threads.
Each system is different and no specific value for CPU consumption (or optimum number of
EXEC threads) can be provided. For most sites the default value of MAXNORM=5 and
MAXHIGH=5 is sufficient. However, the optimum value for an individual system may be

lower or higher.

76 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Additional Recommendations

Ypu should take into consider the following when tuning AutoOPERATOR for the optimum
value of MAXNORM and MAXHIGH:

1.
2.

5.

Start with the least number of EXEC threads needed to get the desired throughput.

Use MAXNORMQ and MAXHIGHQ along with the warning settings in BBPARM
member AAOEXPO0O0 so you can be advised when the EXEC threads queue up. Adjust the
MAXNORM and MAXHIGH values as needed.

. All EXEC threads, whether CLIST or REXX EXECSs, use a large amount of private

storage below the line. Use of an excessive amount of EXEC threads will cause LSQA to
limit the amount of low private available to the system.

. Carefully consider the actions within the EXECs before changing MAXNORM and/or

MAXHIGH settings. Move automation out of EXECs to Rules whenever possible. Rules
are always faster and always use less system resources.

Consider breaking EXECs that wait for an excessive amount of time into multiple parts.
A combination of Rules and EXECs may be used to replace one long running EXECs.

Each system and automation strategy is different and tuning should be done on each system.
However, where you need some recommendations to start with, you can also”

1.
2.

Start with the default values supplied in AAOEXPOQO.

Use the following threshold control fields in AAOEXPOO to determine when you have a
problem.

MAXNORMQ=0 (default of 0 means not in use)
MAXHIGHQ=0 (default of 0 means not in use)
WARNLVL1=60 (default of 60 but not valid until MAXNORM or MAXHIGH used)
WARNLVL2=75 (default of 75 but not valid until MAXNORM or MAXHIGH used)

. Only change automation strategy after careful analysis of what is causing the queues to

back up. Remember, more EXEC threads use more CPU and therefore may increase the
queue back log.

. Use the least number of EXEC threads needed to accomplish the required throughput.
. MAXHIGH should be set equal or higher to MAXNORM.

. Lastly, more EXEC threads means higher use of LSQA, since each thread needs a MVS

TCB, etc. which all reside in LSQA. If you have been experiencing a shortage of low
private storage (for example, ABENDS s878-10), check the values of MAXHIGH and
MAXNORM.

Any value greater than the recommended value of 5 and 5 respectively should be carefully
considered as a possibility of contributing to a shortage of low private storage.

Chapter 5. Controlling EXEC Execution 7/

Invoking EXECs Synchronously with IMFEXEC SELECT(EXEC)

WAIT(YES)

Some automation procedures may need to include more than one EXEC to run. Using the
IMFEXEC SELECT statement in an EXEC allows one EXEC to invoke another EXEC-
initiated EXECs are usually subroutines or service routines that carry out specialized tasks
needed by several automation procedures.

An EXEC can invoke another EXEC under the same thread (synchronously) or under a new
thread (asynchronously). IMFEXEC SELECT allows one EXEC to invoke another. If

IMFEXEC SELECT is coded with WAIT(YES), the called EXEC is invoked to execute under

the same thread. Otherwise, the called EXEC executes as a separate task under a new thread.

The following table shows where you can find more information.

To read about... See...
EXEC-initiated EXECs “EXEC-Initiated REXX EXECs” on
page 42

Using the IMFEXEC SELECT statement and it$ “SELECT” on page 351
parameters

Using variables “Using Variables in REXX EXECs’
on page 49

Passing Control of the EXEC

By specifying the WAIT(YES) parameter on an IMFEXEC SELECT statement, an EXEC can
schedule another EXEC, wait for its completion, and then resume execution.

When an EXEC invokes another EXEC using the WAIT(YES) parameter, control is passed
immediately to the called EXEC. The called EXEC can use the IMFEXEC statements VDCL,
VGET, and VPUT to access all the LOCAL, GLOBAL, and SHARED variables created by the
first EXEC, but it does not have access to any of the TSO variables created by the first EXEC.

The execution of the calling EXEC is suspended when the called EXEC is being processed.
When the called EXEC terminates, the first EXEC receives control at the first statement
immediately after the IMFEXEC SELECT statement.

BBI variables IMFCC and IMFRC are used to report the success of the scheduled WAIT(YES)
EXEC. See “Understanding Completion Codes for EXEC-Initiated EXECs with WAIT(YES)
and User Written Programs” on page 354 for a complete discussion.

For EXECs invoked with the IMFEXEC SELECT EXEC() WAIT(yes) statement, the two
ways to pass back results are using:

* IMFEXEC EXIT CODE(x)

e Alocal, shared, or profile variable

Using RETURN will give control back to the calling EXEC but the passed back value
(RESULT) is not supported.

78 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Implementing an EXEC

Once an EXEC has been designed, coded, and tested, it can be implemented in
AutoOPERATOR using two steps:

Move the EXEC to a data set in the SYSPROC or the SYSEXEC library concatenation of
your production BBI-SS PAS.

If you use both the SYSPROC and SYSEXEC members, the following limitations apply:

EXECs in SYSEXEC can be invokedly if REXX=YES is specifiedin BBPARM
member AAOEXPxx, where xx is the suffix of the member being used. SYSEXEC
can contain only REXX EXECs and tokenized REXX EXECs.

Refer to theMAINVIEW AutoOPERATOR Customization Guigiemore information
about setting REXX=YES in BBPARM member AAOEXPQO.

If you have an EXEC with the same name in both the SYSPROC and SYSEXEC
members, then the EXEC is SYSEXEC is executed.

If you have an EXEC with the same name in both the SYSPROC and SYSEXEC
members, then disabling the EXEC in one member also disables it in the other
member.

In other words, the EXEC always has the same status, no matter which member it is
in.

Both SYSPROC and SYSEXEC can be browsed from the EXEC Management
application.

If you try to invoke an EXEC from the EXEC Management application that is listed
in SYSPROC and ialso listed inSYSEXEC, you will receive an error message.

If the EXEC was moved to the BBPROC library concatenation (the DDNAME is
SYSPROC) after the BBI-SS PAS was recycled, issue the command:

-RESET BLDL SYSPROC

and the EXEC will be available immediately. Changes to existing EXECs take effect
immediately without theRESET command but new EXEC names cannot be accessed
until the .RESET command is issued or the SS is started.

CAUTION:
If you try to access new EXEC names without a SS restart or resetting, you will
receive the following error message displayed in the upper corner:

EXEC NOT FOUND

Chapter 5. Controlling EXEC Execution 79

Controlling EXEC Execution

This section describes how you can control the execution of EXECs once they are invoked by:
e Setting time and CPU limits for EXECs

« Displaying the status of an EXEC

e Stopping (disabling), starting (enabling), and cancelling an EXEC

These functions are performed using the BBI control commands. Refer dAR¢VIEW
Administration Guiddor more complete information about the BBI control commands.

Setting Time and CPU Limits for EXECs

The following list describes how to set CPU and time limits for EXECs.
e Set the parameters in BBPARM member AAOEXPO0O:
— PEREXLIM
— TIMEXLIM
to control time and/or CPU limits for all EXECs.
e Use the IMFEXEC CNTL statement and its parameters in an EXEC:
— PERLIM(xx)
- TIMLIM(xx)
to control time and CPU limits for a specific EXEC.

If these parameters are specified in an EXEC, they override the parameters set on
PEREXLIM and TIMEXLIM in BBPARM member AAOEXPO0O0. Refer to “CNTL” on
page 321 for a complete description of IMFEXEC CNTL and its parameters.

PERLIM(xx)
For example, if you specify:
IMFEXEC CNTL PERLIM(15)

The EXEC will run until it exceeds 15% of the CPU during any 15 second interval. If the
EXEC exceeds 15%, it is automatically terminated.

TIMLIM(xx)
For example, if you specify:
IMFEXEC CNTL TIMLIM(10)

the EXEC will run until it exceeds 10 CPU seconds. If the EXEC exceeds 10 CPU
seconds, it is automatically terminated and abend message U3001 is issued.

When an EXEC exceeds the limits you set, check to see if it is executing correctly or if it
has gone into a loop. Use the EXEC Management Application to determine if EXECs are
running closely to the limits you have set. BMC Software recommends that you set these
parameters with non-zero valugscause a value of zero allows unlimited CPU
consumption by an EXEC

80 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Displaying EXEC Execution Status

You can monitor and control the progress of an EXEC by using the BBI control command
DISPLAY EXEC in the BBI Log display. The format of the command is:

-DISPLAY E|EXEC ALLJHIGH]|NORMAL]|STATS

This command shows the statistics for all running and queued EXECs. By examining the
progress of an EXEC, you can decide whether you need to take actions such as terminating or
disabling the EXEC.

You also can use the EXPAND primary command on the EXEC Management application to
display currently active EXECs. For more information and an example, refer to the chapter
“Managing EXECs Using the EXEC Management Application” inNt#NVIEW
AutoOPERATOR Basic Automation Guide

Cancelling, Stopping, and Starting EXEC Execution

You might decide to manually control the progress of an EXEC once it has been invoked. By
using the BBI control command .DISPLAY, you can see the progress in the BBI Log display.
If you decide to intervene in the EXEC, you can use the following BBI control commands:

BBI Control Action taken
Command
.CANCEL Terminates the execution of an EXEC while it is running or if it is

waiting for a thread to become available.

.STOP Disables an EXEC that is running. This command prevents the EXEC
from being invoked again until it is either STARTed by the BBI
START command or RESET by the BBI RESET BLDL SYSPRO
command. Does not cancel the current EXEC.

[S)

.START Enables an EXEC that has been STOPped and makes it availablle to
be invoked. This command doast invoke an EXEC.

You can also control the execution of an EXEC with the EXEC Manager application. Refer to
the MAINVIEW AutoOPERATOR Basic Automation Gditemore information.

Chapter 5. Controlling EXEC Execution 81

Analyzing EXEC Performance Using the EXEC Management
Application

This section discusses how you can use the EXEC Management Application to analyze how
well EXECs are running on your system.

For a more general discussion about the AutoOPERATOR EXEC Management Application,
refer to the chapter “Using the EXEC Management Application” irMAENVIEW
AutoOPERATOR Basic Automation Guide

The EXEC Management Application has panel displays that show EXEC usage statistics such
as:

e The highest CPU total
e The average CPU percentage

* The number of times an EXEC as been executed since the last AutoOPERATOR
subsystem cold start

For performance analysis, the following data columns are of special interest:
Column Heading Description
SCHED Is the number of times the EXEC has been scheduled.

Each time an EXEC is scheduled from a Rule, ALERT-initiated EXEC,
external program, the TS command line, or another EXEC, the SCHED
count is incremented. A REXX program executed through a CALL
statement is not counted.

When EXECA calls EXECB (with an IMFEXEC SELECT statement
where WAIT(YES) is specified), both EXECA and EXECB are counted
in the SCHED count.

TOTCPU Is the sum of CPU time used for all scheduled executions of the EXEC
since the SS was started.

If the EXEC schedules another EXEC (with an IMFEXEC SELECT
statement where WAIT(YES) is specified), then CPU collection for the
first EXEC is suspended until the selected EXEC returns control. If a
REXX EXEC executes another REXX EXEC using the REXX CALL
facility, the CPU time is charged to the calling EXEC.

AVGCPU Is the value when the value in the TOT-CPU column is divided by the
value in the SCHED column.

MAXCPU Is the greatest amount of CPU time the EXEC used during any single
execution.

82 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Using the SORT Command in the EXEC-Management Application

The SORT command can be used to categorize EXECs by their performance.

To use this command, ent®RT on the command line of the EXEC Management panel. For
example:

SORT AVGCPU D

sorts the display where the EXECs with the highest average CPU consumption are shown at
the top.

By sorting the display, you can more easily see where the AVERAGE CPU consumption of a
specific EXEC is equal-to or less-than the limit set in the TIMEXLIM parameter for the
subsystem.

You should address the EXECs that are executing above this limit for tuning.

Key Performance Indicator Discrepancies: Other discrepancies that can (and should)
be analyzed are:

e When (for any EXEC) the MAXCPU is at least 25% greater than the AVGCPU column

This indicates that an EXEC may be subject to spikes in CPU consumption. This may be
due to the volume of its input or other events that drive the EXEC.

e When the SCHED value (the number of times scheduled) is incrementing rapidly
This can indicate a scheduling loop or a flood of message events.

Note that in this event, the TOTCPU, AVGCPU, and MAXCPU numbers may be low.
Generally, EXECs that are being initiated excessively are Rule-initiated EXECs that are
scheduled by a flood of events.

Often, such problems are resolved by altering the design of the Rule-initiated EXEC.

Chapter 5. Controlling EXEC Execution 83

Writing EXECs that Display CPU Consumption

A common problem with EXEC performance is an EXEC exceeding the CPU thresholds set
for AutoOPERATOR. The resulting abend can be bypassed by using IMFEXEC CNTL
statement in the EXEC to reset the limits. However, this can potentially expose your system to
excessive CPU consumption and/or program loops, and diagnosing a runaway situation such
as this is difficult.

One technique for diagnosing these problems involves writing some additional code in the
EXEC to monitor itself.

For example:

e When writing REXX EXECs, use the statement:
TSO FUNCTION *SYSVAR("SYSCPU®")"

This returns the total amount of CPU seconds used to date for the TCB on which the
EXEC is running.

« Change the EXEC to set a control variable with the CPU value on entry

The control variable can then be manipulated later as required.

For example:

/* REXX */
parse arg exec_name pl .
do x =1 to pl by 1
"VGET VARNAME™]]x "SHARED"
"MSG “VARNAME™]|x "=" value('VARNAME"]|x)"""

end x
"EXIT CODE(0)"
exit O

This EXEC is a subroutine that displays an array of variables from the SHARED variable pool
on the sub-system journal. Occasionally, it may spike in CPU consumption because the
number of array items spikes. However, this is not a situation that can be seen and analyzed
from the EXEC Management application.

84 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Therefore, you can modify the EXEC to identify the problem and display diagnostic data using
the SYSCPU function as shown:

/* REXX */
entry_cpu = trunc(SYSVAR("SYSCPU")) /* Get CPU Time on entry */
parse arg exec_name pl .
do x =1 to pl by 1
"WGET VARNAME"]|]x ""SHARED"
"MSG "VARNAME"]|x "=" value('VARNAME"]|x)
time_used = trunc(SYSVAR("SYSCPU")) - entry_cpu

if time_used => "CPU LIMIT SET ON THE SYSTEM" then
do
"ALERT"™ exec_name"@CPU "CPU TIME AT"™ x "ELEMENTS IS"
time_used"""
entry_cpu = trunc(SYSVAR("SYSCPU"))
end

end x
"EXIT CODE(0O)™
exit O

In this example, the EXEC itself does some preliminary analysis for the EXEC writer. More
typically, this routine would be built into a common function which can be called.

BBSAMP member AOXCPUFI contains an example of REXX internal functions that you can
easily incorporate into another EXEC to selectively call for analysis.

BBSAMP member AOXCPUSI contains an example of a REXX EXEC that uses AOXCPUFI
(internally called by a REXX EXEC as CPU_FUNC) to monitor CPU utilization. This
example EXEC checks CPU consumption after a defined numbers of operations in its calling
routine to determine the threshold number of events that equal a predefined amount of CPU
seconds.

Note: BBSAMP member AOXCPUST contains the tokenized version of AOXCPUSI.
Refer to “REXX EXEC Considerations” on page 103 for more information about
tokenized REXX EXECs.

Chapter 5. Controlling EXEC Execution 85

86 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Chapter 6. Using Advanced Techniques with
AutoOPERATOR EXECs

This chapter describes some advanced functions of AutoOPERATOR EXECs and describes
how to handle EXECs across more than one BBI-SS PAS and target. Topics include:

e Scheduling EXECs across BBI-SS PASs

e Determining the origin of an EXEC

e Using the program called IMFSUBEX to invoke EXECs from outside AutoOPERATOR
e Testing EXECs

« Deleting, reading, and writing SHARED and PROFILE variables across BBI-SS PASs

Overview

Any BBI-SS PAS address space can monitor other target systems. You can also have multiple
BBI-SS PAS address spaces communicating with one another. A target can be:

« Any CICS, IMS, DB2, or MVS system

¢ Any MVS subsystem

Define these two types of targets as follows:

Target type BBPARM member Parameter name
MVS, CICS, IMS BBIINTOO target=
MVS subsystem BBINODOO subsys=

Because EXECs can interact with any target you specify, careful managing of your EXECs
across more than one target or BBI-SS PAS becomes very important. For more information
about targets and BBI-SS PAS to BBI-SS PAS communication, refer MARSVIEW
Administration Guide

Chapter 6. Using Advanced Techniques with AutoOPERATOR EXEB7

Scheduling Messages and EXECs Across BBI-SS PASs

The following items can be sent from one BBI-SS PAS to any other BBI-SS PAS or target,

even in remote locations:

e Messages

e EXECs

e ALERTs

* IMF or MAINVIEW for DB2 service commands

This means a single BBI-SS PAS can monitor and control many systems as long as the target

systems have a BBI-SS PAS product installed. It is also possible to detect and correct

conditions that arise in one target system but affect another target system. This is important
because you want to be able to manage and control all the activity between BBI-SS PASs and

targets.

To accomplish these tasks, you would use the appropriate IMFEXEC statement and specify the
target with the TARGET keyword. The following table shows what tasks you can accomplish

and which IMFEXEC statements to use.

Task

IMFEXEC statement

Send a message to another target IMFEXEC MSG TARGET(tgthame)

Send an EXEC to another target Either:

 IMFEXEC SELECT(exechame) TARGET(tgtname)
« IMFEXEC SET REQ=CALLX

This IMFEXEC statement allows access to the timer facility to invoke
time-initiated EXEC. The TARGET keyword allows you to specify
another target.

Send an ALERT to another IMFEXEC ALERT TARGET((tgtname)

target

Send an IMF or MainView for | IMFEXEC IMFC TARGET (tgtname)

DB2 command to another target

Note:

You can also schedule an EXEC to run at another target with the program IMFSUBEX. Refer to
“Invoking REXX EXECs from Outside of AutoOPERATOR with IMFSUBEX” on page 93 for more
information.

Refer to “Using the IMFEXEC Statements” on page 237 for the complete description of these

IMFEXEC statements.

The target that you specify on these commands must be defined in BBPARM member

BBIJNTOO on the local BBI-SS PAS. For information about how to define targets to a BBI-SS

PAS, refer to “Step 20: (Required) Define BBI-SS PAS Suffixes and Target System
Parameters” in th®IAINVIEW Common Customization Guide

88 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Examples

These examples show how you can schedule EXECs, messages, ALERTS, and other
commands to targets with the TARGET keyword with the appropriate IMFEXEC statement.

To send a message from one BBI-SS PAS to another target: Use the IMFEXEC

MSG statement in an EXEC with the TARGET keyword and specify the name of a target that
is defined in BBPARM member BBIINTOO for an MVS, CICS, IMS, or DB2 system or
BBPARM member BBINODOO for an SS.

The message will be logged on the remote BBI-SS PAS Journal, and no entry will be made on
the originating system's Journal. For example:

"IMFEXEC MSG “MANUFACTURING DATABASE 1S OFFLINE® TARGET(CICSPROD)"

sends a message from a local BBI-SS PAS to the BBI-SS PAS Journal of the production BBI-
SS PAS that is monitoring a CICS system catle€dSPROD.

To schedule an EXEC from one BBI-SS PAS to another target: Use the IMFEXEC
SELECT command in an EXEC with the TARGET keyword and specify the name of a target
that is defined in BBPARM member BBIINTOO for an MVS, CICS, IMS, or DB2 system or
BBPARM member BBINODOO for an SS. For example:

"IMFEXEC SELECT EXEC(PAYROLL START) TARGET(CICSPROD)"

schedules an EXEC from the local BBI-SS PAS to the BBI-SS PAS where the remote CICS
production system is defined.

To send a time-initiated EXEC from one BBI-SS PAS to another target: Use the
IMFEXEC SET REQ=CALLX statement in an EXEC with the TARGET keyword and specify
the name of a target that is defined in BBPARM member BBIIJNTOO for an MVS, CICS, IMS,
or DB2 system or BBPARM member BBINODOQO for an SS. For example:

"IMFEXEC IMFC SET REQ=CALLX @HOURLY START=6:00:00 STOP=20:00:00",
"1=02:00:00 TARGET(BBSYSA)™

schedules an EXEC nam@HOURLY to be run at two hour intervals beginning at 6:00 am and
ending at 8:00 pm on the target system called BBSYSA.

To send an ALERT from one BBI-SS PAS to another target: Use the IMFEXEC
ALERT statement in an EXEC with the TARGET keyword and specify the name of a target
that is defined in BBPARM member BBIINTOO for an MVS, CICS, IMS, or DB2 system or
BBPARM member BBINODOO for an SS. For example:

"“IMFEXEC ALERT NETW2',
""*COMMUNICATION LINES DOWN: /N - DALLAS /N + - CHICAGO"
FUNCTION™,
""(ADD) QUEUE(NETWORK)'",
"PRIORITY(CRITICAL) COLOR(PINK) TARGET(NYCSYS)"

sends a multi-line ALERT to a target called NYCSYS.

Chapter 6. Using Advanced Techniques with AutoOPERATOR EXECB9

To send an IMF or MainView for DB2 command from one BBI-SS PAS to another
target: Use the IMFEXEC IMFC statement in an EXEC with the TARGET keyword and
specify the name of a target that is defined in BBPARM member BBIIJNTOO for an MVS,
CICS, IMS, or DB2 system or BBPARM member BBINODOO for an SS. For example:

"IMFEXEC IMFC PLOT ARVTR ABC IMSNAME=PRODIMS TARGET(SYSAl1l)"

"IMFEXEC IMFC PLOT CSAUT IMSNAME=IMSP TARGET(SYSA1)"
"IMFEXEC IMFC STAT IMSNAME=IMSP TARGET(SYSAl1l)"

invokes synchronous analyzer services such as STAT, CLASQ, or PLOT for automatic logging
on a target called SYSAL.

90 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Determining the Origin of a Command or EXEC

The flexibility of the AutoOPERATOR EXEC processor allows an EXEC to be initiated in

many ways from many targets. Because commands and EXECs can be issued from one target
in one BBI-SS PAS to other targets within or across BBI-SS PASs, you need to know how to
determine the origin of a command or EXEC.

Determining the origin of an EXEC is especially important for security reasons because an
EXEC can send a message or another EXEC to execute some action on another target. The
target should be able to take or not take the action based on the origin of the sending target.

This means that the author of an EXEC must take special steps to ensure that the EXEC's
action is appropriate for the situation. AutoOPERATOR provides two variables that allow an
EXEC to determine:

e The name of the originating BBI-SS PAS (IMFORGSS)
« The origin of the EXEC (IMFORGN)
The origin of commands within an EXEC is the same origin as that of the EXEC.
These variables are defined in “TSO Variables Supplied by AutoOPERATOR” on page 54.
Use these variables to determine, for example, if the caller is authorized to execute the EXEC

or to determine the user ID that is to receive any informational messages returned from the
EXEC. Both variables are automatically available to all EXECs.

Determining IMFORGN

The following table shows what origin IMFORGN) is, depending on how the EXEC was
initially triggered:

If the command or EXEC is: Then origin (IMFORGN) is:
User-initiated (from a BBI-TS) The user's USERID
Time-initiated The BBI-SS PAS ID of the BBI-SS PAS that called the EXEC
BBI-SS PAS message-initiated The BBI-SS PAS ID of the BBI-SS PAS that issued the message
Externally initiated One of these:

« JOBNAME

e The RACF user ID

Refer to “Invoking REXX EXECs from Outside of AutoOPERATOR
with IMFSUBEX” on page 93 for more information about the origin for
externally initiated EXECs. See the definition of “ORIGIN".

IMS message-initiated The IMS JOBNAME of the calling EXEC

IMS command from an IMS terminal The LTERM of the IMS terminal

CICS exception-message initiated The name of the CICS region for which the message was issueq

CICS TD-message initiated The name of the CICS region for which the message was issued

Chapter 6. Using Advanced Techniques with AutoOPERATOR EXECS1

If the command or EXEC is:

Then origin (IMFORGN) is:

DB2 exception-message initiated

The name of the DB2 region for which the message was issued

MVS message-initiated

One of these:
« JOB name
e STC name
e TSSO name

EXEC-INITIATED

The EXEC name of the calling EXEC

ALERT follow-up

Either the user ID of the terminal session user or the value of ORIG

Example - Determining the Origin of a User-Initiated EXEC

IN

Scenario: For this example, there are two BBI-SS PASs called CICM and CICP. CICP has a
CICS target system called CICPROD defined to it.

A BBI-TS user with user ID TSOUSR1 logs onto CICM and schedules an EXEC named
PAYROLL. The origin of the PAYROLL EXEC is TSOUSR1.

The PAYROLL EXEC may try to schedule another EXEC, called DATAB, to the CICP
subsystem which is monitoring CICPROD. The origin of PAYROLL is CICM (the originating
BBI-SS PAS of the EXEC) and it is passed to CICP.

Now, CICP must be able to determine if the origin called CICM is authorized to invoke the
DATAB EXEC by searching BBPARM for the authorization member and validating the
authority of CICM to run the EXEC.

92 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Invoking REXX EXECs from Outside of AutoOPERATOR with

IMFSUBEX

EXECs can be invoked from any job running on a processor with a local BBI-SS PAS address
space or from a remote processor. This can be useful to signal an event, such as the completion
of an SMF Dump job running in the background. To do this, an EXEC can be invoked from a
batch program running as a separate job step or from a callable subroutine within another job
or from TSO.

Use the AutoOPERATOR-supplied program called IMFSUBEX to submit these kinds of
EXECs. Keyword parameters passed to IMFSUBEX must specify:

< Alocal BBI-SS PAS Address Space ID (ASID) or an asterisk (*)
e The name of the EXEC to be invoked

* Any operands to be passed to the EXEC

and optionally:

- Adifferent target

Example of a Parameter String Passed to IMFSUBEX

The following parameter string shows a complete example of all the keyword parameters that
can be passed to IMFSUBEX:

SS(subsys) EXEC(execname pl...pn) [TARGET(tgt) +
ORIGIN(source) WAIT(YES) MSGLVLI(NONE)]

The parameters from this statement are described in the following table:.

Keyword

Required/ Description
Optional

SS

Required Defines a BBI-SS PAS on the same processor as the invoking job. Thig BBI-
SS PAS initially receives and processes the request, sending it to SS(*) pr
another BBI-SS PAS if TARGET is specified.

[©]

If specified as, any BBI-SS PAS found on that processor is acceptable (flom
one to four asterisks accepted). Also, a generic name can be given by using
positional (+) or generic (*) qualifiers, such as SS(+++P) or SS(P*).

EXEC|E

Required Specifies the name of the EXEC and any parameters to be passed to the
symbolic variables defined as input in the EXEC.

Chapter 6. Using Advanced Techniques with AutoOPERATOR EXEC33

Keyword

Required/
Optional

Description

TARGET|T

Required

Identifies a different target from the target system where the EXEC will
invoked.

The specified TARGET should match a TARGET=(tgthame) parameter i

be

=

member BBIJNTOO of BBPARM. The EXEC is scheduled on the subsystem

that corresponds to the subsystem specified by the SS parameter. The
specified TARGET may also be an SSID which the original subsystem
communicates with.

If you omit the TARGET keyword, the default is the SSID name of the
subsystem that services this IMFSUBEX request. Then, you would not n
to specify a TARGET=SS in BBIIJNTOO. In this case, the AUTHJOB=
parameter of your BBPARM authorization member must be specified so
the SSID is recognized as a valid target. For example, you can specify tl
parameter as:

AUTHJOB=*

in the BBPARM authorization member. With an asterisk, the IMFSUBEX
TARGET(). parameter can contanytarget specified in the BBPARM
BBIIJNTOO member for the SS() specified subsystem.

ORIGIN|O

Optional

Specifies the source of the origin identifier used for security checking.

The default for this parameter is JOBNAME. The following values are vali
 JOBNAME causes the jobname to be used as the security token.

¢ RACF causes the value supplied in the USER= keyword of the job ca
be used for the security token.

e USER causes the value supplied in the USER= keyword of the job ca
be used for the security token.

If RACF or USER is specified, IMFSUBEX checks for the existence of th
RACF ACEEUSRI for the address space and uses what is specified as f

eed

that
e

dto

rd to

e
he

security token. If RACF ACEEUSRI does not exist, the JCTUSER field flom

the job control table (JCT) is used.

WAIT|W

Optional

Specifies that at completion of the EXEC, either the generated return ca
the EXEC or the condition code in batch is passed back from IMFSUBE

You must use caution when using the TARGET keyword with WAIT. The
TARGET keyword reserves the VTAM link between the originating BBI-S
PAS and the target BBI-SS PAS for the duration of the EXEC and accep
other requests (such as a user wanting to display an operational panel g
this system). If the EXEC goes into a loop, you run the risk of occupying

de of
X.

S

ts no
gainst
the

link indefinitely and essentially rendering the connection defunct.

94 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Keyword Required/ Description
Optional

MSGLVLI|M Optional Specifies the informational WTO messages to be suppressed. The defallt
issues all WTO messages.
To override the default, codeSGLVLI (n) to suppress all informational
WTORSs.

VTS Optional Causes IMFSUBEX to suppress all messages.

Note: If abbreviations for the keywords are used, they must be separated by blank spaces or commas

Determining Return Codes from IMFSUBEX

A return code from IMFSUBEX indicates whether an EXEC was submitted for processing to
the requested BBI-SS PAS. It is provided as the step completion code for a batch invocation,
&LASTCC for TSO invocation, RC for a REXX EXEC, and returned in R15 when invoked as
a called subroutine. Possible return codes are:

Codes Description of Condition Code

00 EXEC was submitted to the BBI-SS PAS

08 The requested BBI-SS PAS not available, or not at required service level
12 Either BBI or the site security exit denied request

16 Error in the parm string

20 Severe error (program abend)

In IMFSUBEX, to distinguish between the return code generated by the EXEC and the return
code generated by IMFSUBEX, a value of 2048 is added to the return code from the EXEC.
Therefore, if the return code you receive from IMFSUBEX is equal to or greater than 2048,
then the EXEC has been successfully executed and ended.

For example, IMFSUBEX can call an EXEC where the calling EXEC has WAIT(YES)
specified. This means the calling EXEC halts execution until the called EXEC completes
before it completes (also known as synchronous execution). If IMFSUBEX calls such an
EXEC and the EXEC passes a return code of 4 when it completes, then the overall return code
that appears in the job log for the batch job would be 2052.

Note: For the called EXEC to set a return code, the EXEC must use an IMFEXEC EXIT
statement to end the EXEC.

In another scenario, an AUtoOPERATOR EXEC (for example, called EXEC1) or a TSO
CLIST running in an TSO address space can call the IMFSUBEX subroutine which will
schedule a second EXEC (for example, called EXEC?2). If EXEC2 sets a return code of 4, then
the &LASTCC variable would contain a value of 2052. You can use the IMFEXEC EXIT
statement in an EXEC to set the return code.

Chapter 6. Using Advanced Techniques with AutoOPERATOR EXEC85

The following example shows what happens when processing return codes using the WAIT
parameter.

ENAME=SMFDUMP

"CALL *BBI.BBLINK(IMFSUBEX)*® ®SS(SSA1) EXEC(ENAME') WAIT(YES) ™"
IF RC LT 2048 THEN
SAY "EXEC®" ENAME "NOT SCHEDULED RC="RC

ELSE
SAY "EXEC" ENAME "SUCCESSFULLY SCHEDULED RC="RC-2048

If an IMFSUBEX is invoked to schedule an EXEC and the EXEC is not found in the
SYSPROC data set, the return code is 8. If the EXEC is found in the SYSPROC data set and it
is scheduled, upon termination, IMFSUBEX adds the value of 2048 to the return code set in
the EXEC that terminated.

Submission from a Job Step

To submit an EXEC from a job step:

//stepname EXEC PGM=IMFSUBEX,PARM="parm-string”
//STEPLIB DD DSN=BBI .BBLINK,DISP=SHR

To submit an EXEC STOPCICS that stops CICS:

//s1 EXEC PGM=IMFSUBEX,
// PARM="SS(SSA1) EXEC(STOPCICS NOW)*

96 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

To pass different parameters to the EXEC depending on a previous job step's condition code:

//BACKUPD JOB (acct info), "BACKUP PROD-DB",other job parms
//*

//7* USER PROGRAM BACKS UP THE APPLICATION DATABASES
//*

//STEP1 EXEC PGM=userprog

//dd1 DD . . .

//dd2 DD .

//dd3 DD .

//7*

//* BACKUP OK> RESTART DATABASES IN ONLINE SYSTEM
//*

//STEP2 EXEC PGM=IMFSUBEX,COND=(0,NE,STEP1),

// PARM="SS(SSA1) EXEC(BACKUPDB 0 OK)*

//7*

//* ERROR IN THE BACKUP BUT MOST WORK COMPLETED.
//* ATTEMPT TO RESTART DATABASES IN ONLINE SYSTEM,
//* SEND MESSAGE TO WARNING SCREEN

//7*

//STEP3 EXEC PGM=IMFSUBEX,COND=(8,NE,STEP1),

// PARM="SS(SSA1) EXEC(BACKUPDB 8 ERROR)*

//*

//* BACKUP ABENDED> IF DAYTIME, SEND MESSAGE TO
//7* APPLICATION PROGRAMER WITH CICS SEND. IF

//7* NOT, SEND MESSAGE TO WARNING SCREEN.

//7*

//STEP4 EXEC PGM=IMFSUBEX,COND=ONLY,

// PARM="SS(SSA1) EXEC(BACKUPDB ABEND FAILED)*

Chapter 6. Using Advanced Techniques with AutoOPERATOR EXECS7

Submission from a TSO Session

From a TSO session, there are two ways to invoke IMFSUBEX:

¢ With the CALL command:
CALL "BBI.BBLINK(IMFSUBEX)" "parm-string”

* AsaTSO command:
IMFSUBEX parm-string

For example, to start the PAYROLL application from a TSO CLIST, you can use either a
CALL command:

CALL "BBI.BBLINK(IMFSUBEX)" "SS(SSA1) EXEC(PAYROLL START)*
or a TSO command:

IMFSUBEX SS(SSA1) EXEC(PAYROLL START)

Submission from within Another Program

98

IMFSUBEX can be called from within another program. IMFSUBEX need not be authorized
for this by the MVS Authorized Program Facility. The AutoOPERATOR BBLINK library
must be in the STEPLIB concatenation. It should be the last library to avoid any negative
impact on performance.

The first example is an Assembler Language example; the second is a COBOL.

MAINO10 DS OH
LINK EP=IMFSUBEX, PARAM=(STRING)

STRING DC C*"SS(*) EXEC(SSTATUS)",x"00"

With COBOL, a dynamic call is required.

DATA DIVISION.
01 PARM-STRING.
05 PARM-DATA PIC X(30)
VALUE "SS(*) EXEC(STOPDB I1DB002A)" .
05 PARM-END PIC X(1) VALUE LOW-VALUE.
01 IMFSUBEX PIC X(8) VALUE "IMFSUBEX"

PROCEDURE DIVISION.

CALL IMFSUBEX USING PARM-STRING.

MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Note: The parameter string can have up to a total of 256 bytes with the last byte being hex

'00'.

Testing EXECs

You can use the information from any of the following sections and test your EXEC before
you implement it as a BBPROC member. AutoOPERATOR also offers a full testing facility
for you to test EXECs. See Chapter 13, “Testing and Debugging EXECs Interactively” on

page 411.

However, you can also invoke your EXECs and minimize the effect they might have by
employing the techniques in the following sections.

The techniques provide you with a few ways to examine your EXECs:

You can execute an EXEC... See...

And notissue certain IMFEXEC statements, thergb{Testing EXECs with IMFEXEC
minimizing impact of certain EXECs to your systeimlCNTL NOCMD Statements” on

page 100
And examine variable substitution in the BBI-SS | “Testing EXEC with REXX
PAS Journal to see if variables are resolving Statement TRACE R” on page 10
correctly and “Testing EXECs with

SHARED Variables” on page 102

e

And not issue any WTOs you might have included “Testing EXECs without Issuir

WTOs"” on page 103

g

Chapter 6. Using Advanced Techniques with AutoOPERATOR EXEC39

Testing EXECs with IMFEXEC CNTL NOCMD Statements

Example

By including the IMFEXEC statement IMFEXEC CNTL NOCMD, you can write an EXEC
and run the EXEC on your system without actually executing the actions specified with the
following IMFEXEC statements:

 IMFEXEC CMD

* IMFEXEC CICSTRAN

* IMFEXEC IMSTRAN

* IMFEXEC SUBMIT

* IMFEXEC RES EXIT

* IMFEXEC RES MCMD
* IMFEXEC RES VMCMD

Refer to “Using the IMFEXEC Statements” on page 237 for more information about these
individual statements.

For example, you might use the IMFEXEC CMD to issue an MVS command, such as activate
a VTAM terminal, in an EXEC. You can execute the EXEC and choose not to issue the MVS
command by including the IMFEXEC statement:

"IMFEXEC CNTL NOCMD™
in the EXEC, prior to the IMFEXEC CMD statement.
You can track the results of the EXEC by examining the BBI-SS PAS Journal which indicates

that the MVS command was not executed because of the IMFEXEC CNTL NOCMD
statement.

The following is a short example of how you might use IMFEXEC CNTL NOCMD.

"IMFEXEC CNTL NOCMD™
"IMFEXEC CMD #V NET,ACT, ID=BBO10A™

Figure 14. Example of Using IMFEXEC CNTL NOCMD

The MVS command to vary VTAM terminal BBO10A will not be executed when this EXEC is
invoked. In the BBI-SS PAS Journal, you will see a message that looks like:

EM11011 FOLLOWING COMMAND BYPASSED DUE TO TEST MODE:
IMFEXEC CMD #V NET,ACT, 1D=BBO10A

Figure 15. Example 1 of BBI-SS PAS Journal Entry

100 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Testing EXEC-initiated EXECs with IMFEXEC CNTL NOCMD GLOBAL statements

You can test an EXEC-initiated EXEC and not execute the following IMFEXEC statements by
using the IMFEXEC CNTL NOCMD statement with the parameter GLOBAL

« IMFEXEC CMD

« IMFEXEC CICSTRAN

« IMFEXEC IMSTRAN

« IMFEXEC SUBMIT

« IMFEXEC RES EXIT

« IMFEXEC RES MCMD
« IMFEXEC RES VMCMD

The statement:
"IMFEXEC CNTL NOCMD GLOBAL'

will prevent these statements from being executed in the calling and in the called EXEC of an
EXEC-initiated EXEC.

Testing EXEC with REXX Statement TRACE R

By using the REXX statement TRACE R in your EXEC, you can see all the statements in the
EXEC written to the BBI-SS PAS Journal and all the TSO variables resolved as the EXEC
executes. This is useful if you want to insure that your TSO variables are being resolved as you
expected. For a complete discussion for using TRACE R to debug your REXX EXECs, refer to
TSO Extensions Version 2: REXX/MVS User’s Guide

Enter the statement:
TRACE R
at the line of the EXEC where you want to begin this test.

For example, if you were to invoke an EXEC called CALLRSTX and pass two parameters to
it, type:

%CALLRSTX USER1 DETAIL

at any Command line.

Chapter 6. Using Advanced Techniques with AutoOPERATOR EXEL1

The following is an example of the substitution that is logged to the Journal:

14:59:24 EMO0251 FOLLOWING MSG ISSUED FOR EXEC .. CALLRSTX ..

14:59:24 3 *-* ARG NAME PARM1 DETAIL GARBAGE
14:59:24 >>> "CALLRSTX"

14:59:24 >>> ""USER1™

14:59:24 >>> “"DETAIL"

14:59:24 5 *-* /* DISPLAY THE INPUT PARAMETERS */
14:59:24 6 *-* IMFEXEC MSG "PARM1 =" PARM1
14:59:24 >>> "IMFEXEC MSG PARM1 = USER1"
14:59:24 PARM1 = USER1

14:59:25 7 *-* IMFEXEC MSG "DETAIL =" DETAIL
14:59:25 >>> "IMFEXEC MSG DETAIL = DETAIL"

14:59:25 DETAIL = DETAIL

Figure 16. Example 2 of BBI-SS PAS Journal Entry

In this BBI-SS PAS Journal entry, you can see the substitution for the ARG statement where
the values you used to invoke the EXEC are passed to the ARG statement at line 3). Line 5
shows a comment from the REXX EXEC and lines 6 and 7 show the actual substitution of the
variables.

Testing EXECs with SHARED Variables

Another technique you might use is to use the IMFEXEC VPUT statement to put variables into
the SHARED variable pool instead of the LOCAL variable pool. For example, instead of using
this statement:

"IMFEXEC VPUT (WORD1 WORD2 WORD4) LOCAL"
you can use the following statement:
"IMFEXEC VPUT (WORD1 WORD2 WORD4) SHARED™"

By placing the variables WORD1, WORD2, and WORD3 to the SHARED pool, you can
verify the values that were substituted. Use the command:

-D V SHARED

to see how the variables were resolved in the SHARED pool. Once you have verified them,
you can then adjust your EXEC to put the variables back to the LOCAL pool.

102 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Testing EXECs without Issuing WTOs

If you are writing EXECs with the IMFEXEC WTO statement and you want to run your EXEC
without actually issuing the WTO, replace the IMFEXEC WTO statement with IMFEXEC
MSG and the message will be written to the BBI-SS PAS Journal.

For example, if you have the following statement:

"IMFEXEC WTO "THE WORLD IS COMING TO AN END" DESC(2)"

you can comment it out with comment marks (/*, */) and use:

"IMFEXEC MSG "THE WORLD 1S COMING TO AN END""

This message would be written to the BBI-SS PAS Journal.

REXX EXEC Considerations
If you have the IBM REXX Compiler installed at your site, AutoOPERATOR supports
tokenized REXX EXECs with the following considerations:

« The EXEC Management application does display documentatiod¢C) fields for
tokenized REXX EXECs in its display fields.

All comments are removed from the REXX EXEC by the compiler.

e The tokenized REXX EXECs must be stored in a SYSPROC library concatenation.
AutoOPERATOR does not support compiled REXX EXECs.

You can expect significant performance gains when you use tokenized REXX EXECs over
interpreted EXECs. These gains, however, depend on the number of external calls (such as

IMFEXEC commands) or subroutines used.

Wherever possible, REXX functions and subroutines should be built into the parent REXX
EXEC. This is much more efficient because it eliminates the function or subroutine load time.

Once a REXX EXEC has been analyzed for performance and optimized, subroutines called
many times using IMFEXEC SELECT EXEC can be copied internally to the parent and called
using REXX CALL.

BBSAMP member AOXCPUST contains the tokenized version of AOXCPUSI.

Chapter 6. Using Advanced Techniques with AutoOPERATOR EXELS3

Minimizing EXEC Processing Time

In general, BMC Software recommends you use Rules to perform basic automation tasks
whenever possible. Rules are less prone to have errors and use less CPU than EXECs. The use
of EXECs should be considered only after you have determined that the automation task
cannot be accomplished with a Rule.

For AutoOPERATOR to perform automation efficiently with EXECs, the subsystem must be
tuned to process EXECs as quickly as possible. The desirable level of throughput (or the
number of EXECs processed per minute) for each site varies, depending on your automation
requirements and the design of the EXECs.

There are some things you can do to ensure EXECs run more efficiently:
« Fix the dispatching priority of the subsystem.

The subsystem (SS) must be run &xed dispatching priority. The priority of the SS
must be higher than (or equal to) the regions that AutoOPERATOR is managing (for
example: CICS, IMS, JES2). This ensures AutoOPERATOR can quickly respond to
events in these regions.

* Allocate the correct number of EXEC threads.

Adjust the number of EXEC threads (with the MaxNorm and MaxHigh parameters in
BBPARM member AAOEXPO00) to theninimum number required to achieve the level of
throughput you want.

e Use the 0OS/390 Virtual Lookaside Facility (VLF) service which is available with OS/390
(MVS Version 3 and later).

Using VLF allows AutoOPERATOR to perform EXEC processing with a minimum of
I/O activity, and reduced I/O activity leads to less system overhead and improved
performance.

Refer to the IBM publication OS/396itialization and Tuning Referender information
about the VLF service. Refer to “Using VLF to Improve Performance” on page 105 for
more information about AutoOPERATOR EXECs and VLF.

104 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Using VLF to Improve Performance

This section contains information about AutoOPERATOR and VLF.

Implementing VLF

VLF and EXECs

BMC Software recommends that you store your EXECs in VLF using the IKJIEXEC VLF
class. For more information about the IKJEXEC class, refer to the IBM publid@e@ion
Extensions Version 2, Customizatidiis manual also contains some information about
implementation considerations that you should review.

Because there are some known problems with running VLF and TSO, you must make sure all
recommended IBM PTFs are applied.

Important Note

Loading your EXECs from VLF is transparent to the EXEC Management application
However, EXECs stored in VLF cache cannot be tested more than once per SS session by
the AutoOPERATOR EXEC Testing Facility.

The first time you issue the line commantb test the EXEC, the Testing Facility gets
control of the EXEC with TSO OPEN SYSPROC and the test is run. However, subsequent
attempts to test the EXEC cause the EXEC to be scheduled and the Testing Facility|is
bypassed

This occurs because once the EXEC is read into the VLF cache, the EXEC Testing Facility
is not able to get control over the execution of the EXEC.

Ordinarily when you execute an EXEC, for each EXEC, TSO will OPEN SYSPROC, read all
the EXEC records into memory, and CLOSE SYSPROC. If the EXEC is present in VLF
cache, then these three operations are eliminated, which means there is a considerable
reduction in both CPU and I/O (and less DASD device and channel contention) when EXECs
are in the VLF cache.

This is because VLF caches individual SYSPROC data sets. You must determine the
appropriate amount of virtual storage to devote to the cache for this VLF class, which is
specified with the MAXVIRT parameter. The MAXVIRT parameter is documented in the
IBM publicationMVS/ESA Initialization and Tuning Reference

Note that if the specified cache is too small and too many EXECs are cached, thrashing in the
cache can occur and performance could actually be worse than when EXECs are read directly
from DASD. One possible remedy is for you to move the EXECs that are used more frequently
into a smaller data set, place this data set first in the SYSPROC concatenation, and have VLF
cache this data set.

Using the SYSEXEC DD: Ifthe SYSEXEC DD is present, TSO will search it first for each

EXEC, andVLF has no effect on SYSEXEC Therefore, BMC Software recommends you do
not use the SYSEXEC DD.

Chapter 6. Using Advanced Techniques with AutoOPERATOR EXEL®5

Restrictions: Note carefully the restrictions and considerations for updating VLF cached
libraries, both on single and multiple MVS images. For more information, refer to the IBM
publicationTSO Extensions Version 2, Command Referfaraocumentation for the TSO

VLFNOTE command.

106 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Chapter 7. Accessing DB2 from AutoOPERATOR

This chapter describes how you can access DB2 from AutoOPERATOR with REXX EXECs if
you have the BMC Software product RxD2/LINK product installed.

Access DB2 from REXX EXECs with RxD2/LINK

If RxD2/LINK is installed in the BBI-SS PAS, AutoOPERATOR REXX EXECs can issue
dynamic SQLs to access and manipulate DB2 data. The REXX EXEC can ADDRESS DB2 as
it can ADDRESS MVS.

This added facility allows:
« Accessing the DB2 catalog for information about DB2 objects (such as tables and plans)

» Accessing other DB2 tables to read external data that can govern AutoOPERATOR
procedures

« Storing data collected by the EXECs for later queries and reporting using the full function
of SQL

Refer to theRxD2/LINK User Guide and Referenfoe more information about customization
and usage.

Note: The BBI-SS PAS requires authorization for the DB2 functions to be performed.

Chapter 7. Accessing DB2 from AutoOPERATOR Q7

RxD2/LINK Common Functions for REXX EXECs

Several EXECs are delivered with RxD2/LINK to provide commonly used functions and
reduce user coding. They are ready to use and can be invoked from any other EXEC.

Table 6. Common Function EXECs

Common Function EXECs

Description

RXBKLINE(mxlen,iline)

This EXEC truncates the character text in ILINE at a word boundary to a le
no greater than MXLEN. It is useful in displaying a long SQL statement.

If either argument is null, a null string is returned.

RXBKLINE(9, "This is an example®) -> "This is”
RXBKLINE(9, "This too,is an example®) -> "This too,"
RXBKLINE(72,"This is an example®) -> "This is an example~

ngth

ites

n the
ites

display the results in line mode. It does not require ISPF and therefore isu
in any address space; for example, batch jobs, NetView, or AutoOPERAT]
EXECs.

Note: The RXSAMPEX EXEC is invoked by the two sample batch jobs,
RXBATSQL and RXBATCMD, that are distributed as members in
BBSAMP.

RXQCHAR(wname,wdata) This EXEC builds a predicate for the character-type column WNAME from the
string entered as a qualifier in WDATA. It is used to generate SQL predica
from user input specifying a selection qualifier for a column of a table.
RXQCHAR("NAME*®, "DSN*") -> "NAME = "DSN""

RXQCHAR("NAME™, "DSN**™) -> "NAME LIKE “DSN%**"
RXQCHAR("NAME®, "D+N™) -> "NAME LIKE "D_N""
RXQCHAR("NAME*®, "NULL*") -> "NAME IS NULL*®"
RXQCHAR("NAME*®, "ANULL™) -> "NAME IS NOT NULL™
RXQCHAR("NAME*® ,"~="DSN""") -> "NAME ~= "DSN*"
RXQCHAR("NAME*® ,"<"DSN*") -> "NAME < "DSN*"
RXQCHAR("NAME*®,">"DSN"") -> "NAME > "DSN""

RXQNUM(wname,wdata) This EXEC builds a predicate for the numeric-type column WNAME fron
string entered as a qualifier in WDATA. It is used to generate SQL predica
from user input specifying a selection qualifier for a column of a table.
RXQNUM(*NAME" , "123") -> "NAME = 123*""

RXQNUM(*NAME" , "<123%) -> "NAME < 123*""
RXQNUM(*NAME*" , "~=123%) -> "NAME "= 123°"
RXSAMPEX This is a sample EXEC to process SQL statements or DB2 commands 3

nd
sable
OR

108 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Table 6. Common Function EXECs (Continued)

Common Function EXECs

Description
RXSETSQL This EXEC constructs an SQL statement from the text pointed to by a cursor in
an ISPF/PDF edit panel.
SQL = RXSETSQLQO
A = WORDPOS("INTO",SQL)
RXVODS(wdsn)

This EXEC verifies that the data set name specified in WDSN is valid. It
checks that the data set exists and that the data set is either sequential or

a PDS
with a member name specified. The EXEC is used to verify an output data set
before the data set is used.

WMSG = RXVODS($VLSTDS)
IF WMSG = "OK" THEN DO

"ALLOC DD(LCOUT) DA("$VLSTDS'™™) SHR REUSE™
IF RC = 0 THEN NOP

ELSE WMSG = "ALLOC ERROR" RC
END /* WMSG = OK THEN */

Chapter 7. Accessing DB2 from AutoOPERATOR 09

RxD2/LINK Special Functions for REXX EXECs

Several special functions are provided with RxD2/LINK that are required or useful when
accessing DB2.

In REXX, you invoke a function by issuing:

V1 = FUNC(ARG1,ARG2)

where V1 is the variable into which the function FUNC places the result.

Table 7. Special Functions

Special Function

Description

CONVSTCK(tod)

Converts the 8-byte TOD clock into display format of YYYYDDD HHMMSSTH.
Valid from 1/1/1988 onward. The 8-byte TOD format is such that bit 51 equals 1
microsecond (see the IBM publicati8@0 Principles of Operatiofs

TSTMP = "A42AE3F94CE5BB31"X
SAY "TIMESTAMP=" CONVSTCK(TSTMP)

DEFAULT None

RETURN ‘'value' if function completes successfully

NOGO 'reason' if function fails for the reason given

CTOD(tod)

Converts the 8-byte TOD clock time into display format of HHMMSSTH. The 8-1
TOD format is such that bit 51 equals 1 microsecond (see the IBM publi@&ion
Principles of Operations

CPUT = "0000000160B79C00"X
SAY "CPUT=" CTOD(CPUT)

DEFAULT None

RETURN ‘'value' if function completes successfully

NOGO 'reason' if function fails for the reason given

F2C(f)

Do a floating point conversion on variable f and return the floating point number
display format.

/* TEST F2C */

A = "4498765432100000"X

SAY "F2C=" F2C(A)

DEFAULT None

RETURN 'value' if function completes successfully

NOGO if function fails

110 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

yte

Table 7. Special Functions (Continued)

Special Function

Description

GBLVAR

(GETV,varname)
(SETV,varname)
(DROP,varname)
(UPDV,varname)

Create and manage the global variable environment. The global variable environment
is created at first use. Subsequent environment shares the same environment. The

environment is destroyed at the EOT of the task that created the environment.

GETV
Gets the global variable varname and places its content in the local variable var

SAY "TESTVAR=" TESTVAR
SAY "GBLVAR("GETV*","TESTVAR")=" GBLVAR("GETV","TESTAVR")
SAY "TESTVAR=" TESTVAR

SETV
Gets the local variable varname and creates a global variable varname. If the gl
variable varname already exists, it is not replaced.

TESTVAR= "TEST VARIABLE FOR TEST GBLVAR"
SAY "GBLVAR("SETV","TESTVAR")=" GBLVAR("SETV*","TESTVAR")

DROP
Drops the global variable varname.

UPDV
Gets the local variable varname and updates the global variable varname. If the
variable varname does not exist, the function is treated like "SETV".

DEFAULT None

RETURN OK if function completes successfully
OK 'warn' if function completes with a warning

NOGO 'reason' if function fails for the reason given

name.

bbal

ylobal

P2C(p)

Do an unpack on variable p and return the packed decimal number in display fo
/* TEST P2C */

A = "123456789C"X

SAY "P2C=" P2C(A)

DEFAULT None

RETURN ‘'value' if function completes successfully

NOGO if function fails

rmat.

Chapter 7. Accessing DB2 from AutoOPERATOR 11

Table 7. Special Functions (Continued)

Special Function

Description

UENV(hcename,pgm)

Identify to REXX Host Command Environment (HCE) called hcename, such thg
will receive control for ADDRESS hcename. The hcename currently is required t
DB2.

SK = UENV(DB2)

IF SK A= "OK" THEN DO
SAY "UNABLE TO ENABLE RXDB2"
EXIT 16
END

DEFAULT hcename = DB2
pgm = RXDB2

RETURN OK if function completes successfully
NOGO if function fails

t pgm
o be

VARSPF(varname)

A compound variable (AA.1) cannot be used in an ISPF dialog. Function
VARSPF(AA.1) creates a new simple variable AA1 containing the same data as
so it can be used in an ISPF dialog.

The function first compresses out the period(s) in the compound variable name §
then ensures that the resulting variable name is no more than 8 characters long.

IF DATATYPE(SQLEMSG.0) = NUM THEN
DO 1 = 1 TO SQLEMSG.O
SQLEM.1 = SPACE(SQLEMSG.1)
A = VARSPF("'SQLEM.""1)
END /* I LOOP */

DEFAULT None

RETURN OK if function completes successfully
NOGO if function fails

TRUNCATED if function has to truncate the variable name

AA.1

and

WAITSEC(n)

Wait n seconds before continuing to process.

DO 1 =1 TO0 5
A = WAITSEC(2) /* WAIT 2 SECONDS */
SAY "LOOP COUNT=" 1 "TIME=" TIMEQ
END

DEFAULT n =5 (seconds)

RETURN OK if function completes successfully
NOGO if function fails

112 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Chapter 8. Interacting with VTAM-Applications with OSPI

This chapter describes the AutoOPERATOR Open Systems Procedural Interface (OSPI)
feature and how to use to interact with VTAM-based applications and for automation tasks.

Overview

AutoOPERATOR provides the Open Systems Procedural Interface (OSPI) as an interface to
VTAM-based products. OSPI provides a means for REXX- or CLIST-based automation
procedures to interface with any LU2 (3270) VTAM application that uses full screens to
communicate with users.

With OSPI, AutoOPERATOR has logon capabilities and complete access to any VTAM
application's data stream. In this way, AutoOPERATOR can interact with the application by
analyzing the output data and issuing the VTAM application's own commands.

By automatically interfacing with critical VTAM applications and simulating a user at a
VTAM terminal, OSPI can communicate with various data center software products and
decrease the number of physical terminals required.

OSPI includes three components:
* IMFEXEC commands that allow EXECs to communicate with VTAM applications

» A Scripting application that automatically generates IMFEXEC command statements by
recording your interactions with a terminal

« A Debugging facility

These components are described in the following sections:

* “OSPI Sessions” on page 115 provides a general overview about how the Scripting
application generates OSPI EXECs.

e “OSPI Scripting Application” on page 116 provides detailed information about using the
Scripting application.

e “Application Termination” on page 123 describes how to customize EXECs generated by
the Scripting application.

* “OSPI Debugging Facilities” on page 126 describes the Debugging facility.

Chapter 8. Interacting with VTAM-Applications with OSP113

When to Use OSPI

AutoOPERATOR communicates with MVS and its subsystems using standard software
interfaces; for example, the Subsystem Interface (SSI) is used to communicate with MVS.
However, many VTAM applications do not provide a software interface but require use of a
3270 terminal instead.

The OSPI facility provides access from an AutoOPERATOR EXEC to these VTAM
applications without requiring a physical 3270 terminal. OSPI altoast 3270-operator
actions to be emulated by an EXE@e this facility when you need to access VTAM
applications that ordinarily require an operator to actually log on to a 3270 terminal.

How to Use OSPI

The first step in automating a function using OSPI is to use the Scripting application to record
the appropriate interactions with a VTAM application in an EXEC. The generated EXEC
contains only OSPI IMFEXEC commands. It will not contain any conditional logic or other
commands. Refer to “Using the IMFEXEC Statements” on page 237 for descriptions of the
OSPI IMFEXEC command statements.

Depending upon the function being implemented, you may need to further customize the
generated EXEC by combining the appropriate logic and commands with the OSPI IMFEXEC
commands.

After the EXEC has been customized, it is ready to be executed. As with any EXEC, it should
be thoroughly tested before it is installed into your production system.

Customization Required to Use OSPI

A session between OSPI and a VTAM application requires that OSPI function as a 3270
terminal. For OSPI to do this, some OSPI virtual terminals must be defined to VTAM. In
addition, some applications, such as CICS and IMS, might require local definitions for the
OSPI terminals. Finally, your site must be running a release of VTAM of V3 or higher.

These definitions must be implemented and activated prior to using the Scripting application or
executing an OSPI EXEC. See MAINVIEW AutoOPERATOR Customization Guiole

more information about VTAM and application definitions required for OSPI virtual

terminals.

114 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

OSPI Sessions

There are two types of OSPI sessions: scripting sessions and EXEC sessions. You can use both
types of sessions when using OSPI to automate a function. Normally, scripting sessions are
used first to record the appropriate interactions with VTAM applications in EXECs. Then,
EXEC sessions are used when the functions are automatically performed by
AutoOPERATOR.

All OSPI sessions follow the same basic flow regardless of the session type, the application
they are interfacing with, or the task they are performing:

1. A session is established between an OSPI virtual terminal and a VTAM application.
2. Data is then exchanged between the virtual terminal and the application.

3. The session is terminated.

All of these tasks are accomplished using either the Scripting application or IMFEXEC
command statements in an EXEC.

Establishing a Session

To initiate a scripting session, specify the parameters on the OSPI Script Development panel
and press ENTER. The Scripting application uses these parameters to establish the scripting
session and to generate a corresponding IMFEXEC LOGON command. This enables the
generated EXEC to log on to the same VTAM application with the same parameters used in
the scripting session.

Exchanging Data

After a successful logon, the Scripting application automatically receives the first buffer from
the VTAM application. The first panel output by the VTAM application is displayed under the
TS.

No additional IMFEXEC commands are generated at this point because the previously
generated IMFEXEC LOGON command automatically receives the output sent by the
application. When the generated EXEC is executed, control is not returned to the EXEC until
the first complete buffer image is received and available for processing by the EXEC.

As you interact with the application by sending and receiving new data, the Scripting
application records these actions using IMFEXEC TYPE and IMFEXEC TRANSMIT
commands. This enables the generated EXEC to automatically perform the same functions as a
real terminal user might.

Terminating a Session

When you terminate the session with the VTAM application, the OSPI Session Termination
panel is displayed. You then have the option of saving or cancelling the script. If the script is
saved, an IMFEXEC LOGOFF command is generated, the EXEC is saved in the first data set
of your SYSPROC concatenation, and the commzRESET BLDL SYSPROC is automatically

done.

Chapter 8. Interacting with VTAM-Applications with OSP1L15

OSPI Scripting Application

User interaction with OSPI is simplified with the Scripting application. The Scripting
application records your keystrokes as you make them, and you can use this Scripting
application to create complex procedures to drive 3270 applications without writing a line of
procedural code.

The OSPI Scripting application can create procedures in either CLIST or REXX.

Accessing the OSPI Scripting Application

Access the Scripting application by selecting option 7, OSPI, from the PRIMARY OPTION
MENU. The OSPI Script Development panel, shown in Figure 17 on page 117, is displayed.

The following topics provide details about accessing a VTAM application using the OSPI
Scripting application.

To learn about... See...

Specifying the appropriate data for establishing a session “OSPI Script Development
Panel” on page 117

Differences you may see when accessing an applicatiorfInteracting with the
under the Scripting application versus directly through Application” on page 119
VTAM

Making data in the terminal buffer available to a generatetRetrieving Screen Data into
EXEC Variables” on page 122

The options available for ending an OSPI session with at\pplication Termination” on
application page 123

116 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

OSPI Script Development Panel

BMC SOFTWARE ------———————————- OSPI Script Development --------- AutoOPERATOR
COMMAND ~ ===> TGT ===> SYSB
DATE --- 01/01/15
TIME --- 13:15:51

To begin a Scripting Session, specify the following and press ENTER

Member name ===> OSPI Application for LOGON ===>

Overwrite existing member ===>Y Hot key ===> PF 11 (01-12)
Logmode to use ===> D6327802 Debug ===> N

User data ===>

ACB to use ===> Language Option ===> CLIST (REXX/CLIST)

Process initial receive ===>Y

Press END to abort request

Figure 17. OSPI Script Development Panel

The OSPI Script Development Panel is used to specify the parameters, such as the application
to be accessed and the terminal type to be emulated, for establishing the scripting session.
Figure 17 shows default values in all fields.

Following is a description of each field:

Member name
Name to be used when the generated EXEC is stored in the SYSPROC data set.

Note: If multiple data sets are concatenated to the SYSPROC DD, the member is
stored in the first data set in the concatenation.

Application for LOGON
Name of the application (as specified in a VTAM APPL statement) you want to establish
a session with. VTAM interpret tables are not used so this name may differ from the
name you enter when logging on at a terminal.

Overwrite existing member
If the member named in thvember name field already exists, verify that you want to
overwrite it.

Hot key
ISPF may process certain program function (PF) keys, such as SPLIT and SWAP, before
passing them to OSPI. For this reason, you must use the OSPI hot key in place of any PF
or PA keys. The default hot key is PF11. You can reassign it to any non-ISPF specific PF
key.

When you press the hot key, a hot key pad is displayed to allow you to specify which
PF/PA keystroke should be passed to the application.

See “Program Function Keys” on page 120 for information about using the hot key pad.

Chapter 8. Interacting with VTAM-Applications with OSPLL17

Logmode to use
The logmode associates certain terminal characteristics, such as support for extended
attributes (color, reverse video, and so on) and screen size, with the OSPI terminal
emulation. The type of terminal that is emulated may affect the application displays seen
by the scripting user and the data available to the generated EXEC. See “Extended
Attributes” on page 119 for more information about selecting an appropriate logmode.

The logmode must be a valid VTAM MODEENT in the MODETAB associated with the
OSPI ACB (specified in theCB to USE field). The default is a 3278 Model 2,
specified ap6327802. This is the recommended logmode to use.

Debug
Specifies whether or not debugging information will be written to the BBI-SS PAS
Journal log and to the OSPISNAP data set.

User data
Text (such as userid) to be passed to the application during session establishment.

ACB to use
ACB to be used for the OSPI virtual terminal. If you do not specify an ACB, an ACB is
selected from the OSPI ACB pool. The ACB generated on this panel is intentionally not
carried forward into the generated EXEC.

See theMAINVIEW AutoOPERATOR Customization Guidemore information about
ACB definitions required for OSPI virtual terminals.

Language Option
Specifies the CLIST language to be used in the generated EXEC where:

— Specifying REXX causes a REXX EXEC to be generated.
— Specifying CLIST causes a TSO CLIST to be generated.

Process Initial Receive
Indicates whether or not OSPI should attempt to receive an initial panel (buffer) before
allowing data to be entered and sent to the application. The default is Y and results in
OSPI waiting for the first panel (buffer) to be received from the application before
allowing the terminal operator to enter data.

In most cases, the default should be used. However, when logging on to an application
that does not display an initial panel before allowing the terminal user to enter data (for
example, a CICS system without a "Good Morning" transaction), you must spettify
avoid an unending wait. Refer to “Receive Complete Detection” on page 121 for more
information.

After you press ENTER, OSPI attempts to establish a session using the parameters specified. If
a session is successfully established, the first panel output by the VTAM application is
displayed under the TS. You can now interact with the application to perform and record the
function you want to automate with an OSPI| EXEC.

If a session cannot be established, the OSPI Session Termination panel is displayed. See “OSPI

Session Termination Panel” on page 127 for information about interpreting the VTAM error
codes displayed on the panel.

118 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Interacting with the Application

3270 Attributes

Most of the time, accessing an application under the OSPI Scripting application is identical to
accessing the same application directly through VTAM. However, there are some differences
in the following areas:

e 3270 attributes, such as extended color or extended highlighting
¢ Program function (PF) keys

e ISPF jump function

e Screen size and usage

* Receive complete detection

Displays that contain extended color or extended highlighting attributes may look slightly
different when executing under OSPI because OSPI does not honor these attributes. Data
streams containing these attributes are not properly interpreted and may cause errors, such as
treating fields with extended attributes as protected.

These attributes are not honored because extended attributes do not occupy a position in the
screen buffer and, therefore, OSPI EXECs cannot benefit from their settings.

Extended Attributes: OSPI terminal emulation uses the characteristics associated with the
terminal LOGMODE specified on the OSPI Script Development panel and, ultimately, on the
generated IMFEXEC LOGON command. Therefore, always choose a LOGMODE that
designates the least amount of terminal capabilities possible.

Some applications use reverse video to create bars on a screen whenever the LOGMODE
indicates that the terminal supports extended attributes. OSPI EXECs would simply see blanks
in the field that contained the reverse video bars. However, the same application may use
character data instead of the reverse video bars when the LOGMODE indicates that the
terminal does not support extended attributes.

Chapter 8. Interacting with VTAM-Applications with OSPL19

Program Function Keys

The OSPI Scripting application may execute under ISPF, and thus ISPF may process certain
program function (PF) keys, such as SPLIT and SWAP, before passing them to OSPI. For this
reason, it is necessary to use the OSPI hot key in place of any PF or PA keys. The default hot
key is PF11. It may be reassigned to any non-ISPF specific PF key.

When you press the hot key, the OSPI Transmission Keystroke panel, shown in Figure 18, is
displayed. Enter the option number associated with the PF or PA key you want to transmit to
the application.

BMC Software ---————————-- OSPI transmission keystroke ---------- AutoOPERATOR
COMMAND ===>
Please select action from list below:
Keystrokes:
PF1 - 1 PF13 - 13 ENTER - 25
PF2 - 2 PF14 - 14 CLEAR - 26
PF3 - 3 PF15 - 15
PF4 - 4 PF16 - 16 PA1 - 27
PF5 - 5 PF17 - 17 PA2 - 28
PF6 - 6 PF18 - 18 PA3 - 29
PF7 - 7 PF19 - 19
PF8 - 8 PF20 - 20 Other Options:
PF9 - 9 PF21 - 21
PF10 - 10 PF22 - 22 Cancel Session - 30
PF11 - 11 PF23 - 23 Read variable - 31
PF12 - 12 PF24 - 24 Attempt read - 32
Variable name ===>
SHARED variable name ===>
Select Option ===>

Figure 18. OSPI Transmission Keystroke Panel
ISPF Jump Function

The OSPI Scripting application is designed to execute under ISPF. Therefore, you must be
careful when entering an equal sign (=) into any application screen OSPI displays.

When an equal sign is entered under ISPF, ISPF passes PF3 to the application as an indication
that the application should terminate. OSPI does not process the PF3 but instead passes it to the
application being scripted. ISPF continues passing PF3 until OSPI terminates. OSPI will
continue passing PF3 to the scripted application and will never terminate. Therefore,
attempting to enter the ISPF equal sign under the Scripting applicadipoause the TS to

loop.

120 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Screen Size and Usage

The OSPI Scripting application is designed to execute under ISPF. An application, such as
OSPI, executing under ISPF must define the attributes associated with its display to avoid
having a random attribute value assigned. Since ISPF does not support extended attributes, a
position on the screen is always required to specify an attribute. The OSPI Scripting
application uses line one, column one to specify an attribute and avoid having some random
assignment.

With the Scripting application, you cannot enter data in line one, column one. Data is also not
displayed in line one, column one. The first 80 bytes of output are shifted one byte to the right
and byte 80 is not displayed if the buffer image to be displayed does not start out with an
attribute byte. The date is shifted back one byte to the left before transmission to the
application.

This restriction does not apply to OSPI EXECs. If necessary, EXECs generated by the
Scripting application can be manually edited to specify that data be entered in row one, column
one.

In addition, OSPI can only support screen sizes between 24 lines and 43 lines with a column
width of 80. Any other screen size specified in a LOGMODE used by an OSPI virtual terminal
causes errors.

Receive Complete Detection

When you send a new screen of data to the application, the Scripting application automatically
tries to receive new data from the application. OSPI does not unlock the keyboard until the
application has finished sending data.

Depending on the protocol used by an application, either the Change Direction Indicator (CDI)
or End Bracket (EB) is used to determine when the application is finished sending data. If an
application sends one of these indicators prematurely, it may be necessary to explicitly request
that an additional receive be issued to receive data sent after the erroneous CDI or EB.

The OSPI Transmission Keystroke panel is used to request that an additional receive be issued.
To do this:

1. Use the OSPI hot key to access the keystroke panel.

2. Select option 32, ATTEMPT READ, when the panel is displayed.

If ATTEMPT READ is not issued, the data sent after the CDI/EB is not retrieved until
after the next transmission of data from OSPI to the application.

Each time an ATTEMPT READ is issued, an IMFEXEC RECEIVE command is generated.
IMFEXEC RECEIVE is not normally needed because OSPI automatically receives new data
after IMFEXEC TRANSMIT.

Examples of applications that may require this special processing are Netview and VM/CMS.

Chapter 8. Interacting with VTAM-Applications with OSP1L21

Retrieving Screen Data into Variables

In addition to the IMFEXEC commands necessary to communicate with VTAM applications,
the Scripting application can also generate the IMFEXEC SCAN commands necessary to
retrieve data from the screen buffer into a variable.

You can use the OSPI Transmission Keystroke panel to request that some specific data in the
screen buffer be read into a variable. This panel is accessed using the PF key designated as the
OSPI hot key (default is PF11).

When the OSPI Transmission Keystroke panel is displayed, enter Reéthevariable
option) in theSelect Option field of the panel. Also type in the name of the variable you
want to create in theariable name field. This causes data to be read into a variable. The
default variable name is OSIVAR.

You can also specify a SHARED variable name in$HaRED variable name field which
places the data into the SHARED variable using the given name.

When you press ENTER, the application screen that was displayed when you pressed the hot
key is redisplayed. However, this display is used only to tell OSPI which data you want to
retrieve from the screen. You cannot interact with the application at this point.

Position the cursor to the beginning of the data you want to read into a variable and press
ENTER. Now position the cursor to the last position of the data you want to read and press
ENTER. This sequence causes OSPI to generate an IMFEXEC SCAN command for the row,
column, and length that was indicated by the cursor in the previously described sequence; for
example:

IMFEXEC SCAN SESSION(&OSISESS) ROW(18) COL(6) LENGTH(6) +
VAR (OSIVAR)

Of course, OSPI does not know how you want to use this data in your EXEC. You must edit the

EXEC to make proper use of the data. However, it is much easier to retrieve the data using the
read variable option than by calculating the correct row and column positions manually.

122 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Application Termination

VTAM applications have a variety of methods by which you can request termination. For
example, one application may terminate a session Wbgoff is received and another
application may terminate a session when PF key 2 is received.

Since the data required to request session termination varies by application, OSPI does not
know when such a request has been sent.

Each time the Scripting application sends data to a VTAM application, it also attempts to
receive data. This read attempt usually fails after a request to terminate is sent. This failure
causes OSPI to display an error panel. An example of this error panel is shown in Figure 19.

BMC Software ---——-—-—--—-—————— OSPI Session Termination —------- AutoOPERATOR
COMMAND ===>

The OSPIl session has terminated.
Outstanding function was: RECEIVE DATA
VTAM ACB error flag: 00
Diagnostic information:
RPL RTN/FDBK=0COB, SENSE=00000000
REQ CANCELLED DUE TO SESSION

THE SESSION HAS BEEN TERMINATED

Note: The above information may indicate that the session was terminated
normally or abnormally.

Press ENTER to display last buffer image, PF3 to save script and return.
Enter CANCEL to skip script saving.

Figure 19. Example of Error Panel

The unsuccessful read looks like a true error to OSPI because it does not know that the last data
sent requested application termination. If you receive this panel after you requested application
termination, no true error occurred and you can ignore the error panel.

Note: You can also terminate a session using option 30, Cancel session, from the hot key
pad. However, this is not recommended because the appropriate application clean-up
may not be performed.

Chapter 8. Interacting with VTAM-Applications with OSP123

Customizing OSPI EXECs

The first step in automating a function using OSPI is to use the Scripting application to record
the appropriate interactions with a VTAM application in an EXEC. The generated EXEC will
contain only OSPI IMFEXEC commands. It will not contain any conditional logic or other
commands.

Depending upon the function being implemented, you may need to further customize the
generated EXEC by combining the appropriate logic and commands with the OSPI IMFEXEC
commands. This section provides customization information in the following areas:

e “OSPI Control Variables” on page 124

« “Disconnect/Reconnect Feature” on page 125

e ‘“Establishing Multiple Sessions” on page 125

e “Using Passwords in OSPI EXECs” on page 125

Note: This chapter discusses the OSPI IMFEXEC statements in general terms. See “Using
the IMFEXEC Statements” on page 237 for information about specific parameters,
return codes, and so on.

OSPI Control Variables

OSPI maintains a set of control variables that indicate the state of each OSPI session. These
control variables are maintained in the EXEC's local variable pool. They are updated each time
a new buffer image is received from the application.

The variables are:

OSISESS Session identifier. Must be used with the SESSION keyword on all OSPI
IMFEXEC commands (except LOGON) to identify the session you are
addressing.

OSIKSTAT Current keyboard status, either LOCKED or UNLOCKED.

OSIAPPL Name of the VTAM application associated with the OSPI session.

OSIROW Current cursor position, 1 to 43.

OSICOL Current cursor position, 1 to 80.

OSILNCNT Number of rows for the terminal type being emulated, 24 to 43.

OSILNNnN Each OSILNnn represents one line of the current virtual screen buffer image.
For example, OSILN2 contains line 2 of the current screen buffer image.

Before an EXEC can use one of the variables, it must be retrieved with an IMFEXEC VGET
command; for example, IMFEXEC VGET OSISESS LOCAL.

124 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Disconnect/Reconnect Feature

When an EXEC terminates, any OSPI sessions that have been established are either terminated
or disconnected.

The IMFEXEC LOGOFF command without the DISCONNECT parameter results in a
termination request being sent to the VTAM application. When the DISCONNECT parameter
is specified, the VTAM session is not terminated and another EXEC may resume the session
(RECONNECT) by issuing an IMFEXEC LOGON command with the SESSION parameter.
The application will not be aware of any DISCONNECT/RECONNECT activity.

When an EXEC tries to reconnect a session, it is important that you check the condition code
(IMFCC) after the IMFEXEC LOGON command. Reconnect sometimes fails due to
applications terminating OSPI sessions when no activity occurs within a specified time. If
IMFCC indicates that a reconnect is not successful, you must reestablish a new session.

To make use of the DISCONNECT/RECONNECT feature, the EXEC that initially establishes
the session must store the session identifier (contained in the OSISESS variable) in a shared
variable. This variable can then be retrieved by subsequent EXECs to reconnect. A unique
shared variable name must be used for each different session that is concurrently maintained.

If an EXEC does not issue an IMFEXEC LOGOFF command, all sessions are automatically
terminated. The result is the same as if explicit IMFEXEC LOGOFF commands had been
issued for each session.

Establishing Multiple Sessions

An EXEC may establish sessions with multiple VTAM applications concurrently; however, a
different OSPI control variable prefix must be used for each session. If different prefixes are
not used for each session, the information for one session overlays the information for another
session.

The default prefix for the OSPI control variables is OSI. The PREFIX keyword on the
IMFEXEC LOGON command allows any three character prefix to be used for the variables.

Using Passwords in OSPI EXECs

Many of the applications that OSPI EXECs will access require passwords for logon. If the
Scripting application is used to create the EXEC, the password is stored in the EXEC. For
security reasons, BMC Software recommends that you edit the EXEC to replace the password
literal with a variable.

One approach for handling this situation is to schedule an EXEC at AutoOPERATOR startup

which requests the operator to enter the password. The password can then be stored in a global
variable that can be retrieved by any OSPI EXEC needing access to the application.

Chapter 8. Interacting with VTAM-Applications with OSPL25

OSPI Debugging Facilities

Return Codes

OSPI provides several facilities to aid in debugging EXECs and scripts.

Each of the IMFEXEC commands that interface with OSPI provides return code information
in the IMFCC variable. Examining the value of IMFCC after issuing the IMFEXEC command
can be useful during script development. During this phase, it may even be beneficial for you
to record the IMFCC value in the BBI-SS PAS Journal log using the IMFEXEC MSG
command.

After an EXEC has been fully debugged, IMFCC checks or messages that were added solely
for debugging purposes should be removed. However, the IMFCC check for certain
IMFEXEC commands should be retained even after development has been completed. For
example, IMFCC after an IMFEXEC LOGON that specifies the SESSION parameter
(reconnect) should always be retained.

Error Messages

Certain error conditions cause OSPI to generate error messages in the BBI-SS PAS Journal
log. For example, error message OS5001E is produced if an attempt is made to enter data in a
protected field. When a script is not functioning properly, it is always advisable for you to
examine the BBI-SS PAS Journal log for error messages. If an error message is produced,
additional information about the error can be found using the BBI Message application.

OSPI Control Variables

OSPISNAP

OSPI maintains a set of variables for each active or disconnected session. You may benefit
from examining the value of one or more of these variables during EXEC development. See
“OSPI Control Variables” on page 124 for more information about the control variables.

The OSPISNAP DD can be used to gather additional debugging information for OSPI EXECs
and for the Scripting application. You must add the DD card to the BBI-SS PAS JCL and
restart the BBI-SS PAS before directing any debugging information to it. The DCB
characteristics for the OSPISNAP DD statementREEFM=VBA, LRECL=125,

BLKS1ZE=1632. The blocksize can be modified to fit your DASD requirements.

OSPISNAP may be routed to a SYSOUT class or to a data set. Two kinds of output can be
directed to the OSPISNAP: session information and debugging information requested by
BMC Software.

126 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Session information is requested using the IMFEXEC SESSINF command. This command
causes the following information to be recorded in the OSPISNAP data set:

* OSPI ACB associated with the current session
e Application that OSPI is in session with

« Keyboard status

e Cursor position

* Contents of screen buffer

Since the screen is not visible to a human developing an OSPI EXEC, you may find it helpful
to use the IMFEXEC SESSINF command during the debugging phase.

If BMC Software support personnel request debugging information, you can obtain it by
specifying the DEBUG keyword on the IMFEXEC LOGON command or on the Scripting
panel. When you use the DEBUG keyword, the information is also written to the OSPISNAP
data set when the EXEC is invoked. When DEBUG is turned on, additional messages are also
written to the BBI-SS PAS Journal log.

Note: If you specifyY for the DEBUG option on the Scripting panel, debugging information
is written to the OSPISNAP data set only during script development and not written
to the OSPISNAP data set during EXEC execution.

OSPI Session Termination Panel

When a session between OSPI and a VTAM application is terminated, the OSPI Session
Termination panel is displayed. This panel contains VTAM diagnostic information.

The following table contains error codes for some of the common reasons OSPI sessions are

terminated.
ACB RPL Sense Cause of Error
Error Return and
Flag Feedback
codes
B5A N/A N/A OSPI terminal ACB cannot be opened
N/A 1012 087D0001 Application to log on to cannot be located
N/A 144B 00000000 OSPI terminal logmode cannot be located
N/A ocoB 00000000 Application terminated the session
N/A 0006 00000000 Application terminated the session

When the diagnostic information indicates that the application has terminated the session, an
error may not have actually occurred. See “Application Termination” on page 123 for more
information about application termination and the OSPI Session Termination panel.

See “OSPI Script Development Panel” on page 117 for more information about specifying
ACB, application, and logmode names.

Chapter 8. Interacting with VTAM-Applications with OSP1L27

128 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Chapter 9. Performing Automation Using AOAnywhere

This chapter describes the AOAnywhere API and the syntax required to use it.

AOAnywhere is an application programming interface (API) that allows MAINVIEW AutoOPERATOR users to
perform a variety of automation functions from outside the BBI-SS PAS address space. You can invoke
AOAnywhere functions from

e The TSO/E command line
e Inside a REXX EXEC or TSO/E CLIST EXEC

You can invoke these functions to operate locally on a BBI-SS PAS running on the same system that the command is
invoked from, or route functions to a remote system.

Overview

AOAnywhere allows AutoOPERATOR IMFEXEC automation functions to be invoked from address spaces outside
of AutoOPERATOR using a new command: AOEXEC. The equivalent of the following IMFEXEC commands are
available as AOEXEC commands:

e AOEXEC ALERT

AOEXEC MSG

» AOEXEC NOTIFY
e AOEXEC SELECT
« AOEXEC SYSINFO
» AOEXEC VDEL

* AOEXEC VGET

e AOEXEC VLST

» AOEXEC VPUT

e AOEXEC VDELL

« AOEXEC VGETL

* AOEXEC VLSTL

* AOEXEC VPUTL

Chapter 9. Performing Automation Using AOAnywher&29

Sysplex Support

AOAnywhere functions can be invoked either locally (meaning on a BBI-SS PAS running on the same system that
the command is invoked on) or remotely to a BBI-SS PAS.

To invoke a command on a remote system:
« A BBI-SS PAS must be active and available on the local system.

« XCF connectivity must exist between the local and the remote BBI-SS PAS.

Why Use AOAnywhere

AOAnywhere is a powerful function that allows access to many automation functions previously available only by
using AutoOPERATOR IMFEXEC commands (in REXX EXECs or CLIST EXB@#)in the AutoOPERATOR
subsystem AOAnywhere allows such access through an interface that operates outside of the subsystem. You can
perform tasks that are part of production control or perform tasks that are part of a helpdesk system such as set and
read variables or create or delete AutoOPERATOR ALERTS from REXX EXECs without going through the
subsystem.

In previous releases of AutoOPERATOR (prior to version 6.1.00), you could use the IMFSUBEX interface to invoke
EXECs but this method was slow and did not allow for two-way exchange of information. Only a return code issued
by the invoked EXEC could be returned.

AOAnywhere functions are very fast; they allow sharing variable pools with invoked EXECs and access to a host of
other functions. In most instances AOAnywhere offers a faster IMFSUBEX replacement while providing additional
functionality.

Manual process intervention is also simpler. For example, when a helpdesk operator becomes aware of a network
problem before automation does, the operator can generate an AutoOPERATOR ALERT and (with the MAINVIEW
AutoOPERATOR Elan Workstation component installed) page additional personnel through an ISPF application.
Logging on to the subsystem is not required and the operation itself can be executed in a few minutes.

Specific messages can be sent to the BBI Journal from any TSO/E REXX or CLIST application where specific
information about an automation situation or multi-system support can be provided via XCF connectivity.

AOAnywhere opens up automation possibilities through a simple command processor that can be invoked in a
variety of environments.

Installation Requirements

To use the AOEXEC command processor under TSO/E, it must be available to the TSO/E user under the
STEPLIB/LINKLIB concatenation. Otherwise the command processor will not be found.

Currently, you can secure access to AOAnywhere with the same security measures available for writing

AutoOPERATOR EXECs. These security measures are described in the BMC Software dbcynheeménting
Security for MAINVIEW Products

130 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

API Implementation under REXX and CLIST

The API functions are available as a separate command processor. This feature allows simultaneous use for the API
by TSO/REXX and TSO/CLIST.

Differences between IMFEXEC and AOEXEC Parameter Syntax

Parameters and return codes between IMFEXEC and AOEXEC commands are identical with the following
exceptions:

* Al AOEXEC variable operations (VPUT, VGET, VDEL and their long counterparts) specify the variable names
using the VAR() keyword instead of a positional parameter.

* The AOEXEC VPUT command has no FROM(), USING() or ENCRYPT() parameters.
* The AOEXEC VGET command has no INTO(), DECRYPT or DELIM() parameters.

¢ All AOEXEC commands might return a return code of —1 with the TGTSS() keyword. In this case, either the
request timed out or the target system was shut down in the middle of a request.

e Al AOEXEC commands accommodate two extra keywords, SS | SSID() and TGTSS() where

SS | SSID(subsystem identifier Required keyword.

SS | SSID() specifies the subsystem identifier of a local
subsystem. If the TGTSS() keyword is not specified
this SSID is the subsystem where the requested
function is executed.

TGTSS(target system identifier Optional keyword.

If the TGTSS() keyword is specified, the subsystem
specified by the SS | SSID() keyword is considered g
router and the actual function is executed on the
subsystem specified by TGTSS().

It must be in the same sysplex as the BBI-SS specitied
with the SSID() keyword, and both systems must hgve
the same XCFGROUP specified in the BBPARM
BBISSPxx.

Additional Differences

All AOEXEC commands return values in return codes that are listed with each AOEXEC command. The values are
returned differently depending on where the AOEXEC command is issued from. For example, if the AOEXEC
command is used in a REXX EXEC, the return code will be returned in the RC variable. If the AOEXEC command is
used in a CLIST EXEC, the return code is returned in &LASTCC.

Furthermore, the AOEXEC command processor attempts to streamline the syntax of some of the supported
commands. For example:

e For the AOEXEC ALERT command, the first two positional parameters are replaced by the keywords TEXT()
and KEY() respectively.

Chapter 9. Performing Automation Using AOAnywherg31

e The TARGET() keyword has been removed from all AOEXEC commands and replaced by the TGTSS()
keyword.

e The VAR() keyword can be overwritten in the invoked EXEC by specifying the IMFEXEC SHARE command.

« The AOEXEC SELECT command has a new keyword, VAR(). This keyword specifies the names of any number
of variables that will be exchanged with the LOCAL variable pool of the selected EXEC.

Before the target EXEC begins, the contents of these variables are placed as variables of the same name into the
LOCAL pool.

When the EXEC ends, the contents of these variables in the target EXEC's LOCAL pool are extracted again and
placed as TSO variables in the pool of the invoking EXEC.

Each of these exceptions has been reflected in the documentation for each of the AOEXEC commands.
Example

Here is an example about how to share variables between an EXEC running in a TSO/E address space and an EXEC
running in the subsystem:

a="ONE"
"AOEXEC SELECT EXEC(DEMO) VAR(A B) WAIT(YES) SSID(TGTA)"
say b

These lines within a REXX EXEC causes the EXEC named DEMO to be invoked on the subsystem named TGTA.
Before the EXEC begins processing the contents of the variables of the invoking EXEC, variables A and B are placed
in the EXEC’s LOCAL variable pool. Variable B’s value has not been set but specified for data exchange with the
PAS EXEC.

The code for the EXEC in the subsystem is
"IMFEXEC VGET A LOCAL"
"IMFEXEC MSG A"

b="TWO"
"IMFEXEC VPUT B LOCAL™

This code causes the message ONE to be written to the subsystem journal. Subsequently the value of TWO is placed
into the variable B and this variable placed into the EXEC’s LOCAL variable pool. This variable pool will be
transmitted back to the invoking REXX EXEC. Note that the specified contents of the LOCAL variable pool, in this
case the variables A and B, are shared with the invoking EXEC.

The statement

say b

causes the value of B, in this case now TWO, to be written to the TSO/E console.

132 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Implementing the AOAnywhere Batch Interface: AOSUBX

For batch jobs, AOAnywhere contains a facility called AOSUBX. This facility is a partial replacement for the
existing IMFSUBEX function. Both functions allow you to invoke an EXEC from a batch step with the PARM=
specification.

Both facilities allow for requests to be scheduled across systems. However, AOSUBX (unlike IMFSUBEX), requires
sysplex connectivity between the systems.

In addition, AOSUBX offers significantly shorter execution time and the ability to wait for EXECs scheduled across
systems without tying up the VTAM link between multiple BBI-SS PASs. When sysplex connectivity exists, (as it
should when using AOSUBX), you should always choose AOSUBX for EXEC invocation.

In a TSO/E environment, a suite of command processor functions is available under the AOEXEC facility. Refer to
“AOEXEC Commands” on page 135 for details. This approach is preferred under TSO/E as opposed to using the
AOSUBX facility.

Why Use AOSUBX

Under certain conditions it is convenient to initiate an EXEC from a jobstep or procstep. This invocation can signal
the completion of a particular function or the necessity to execute AutoOPERATOR functions on behalf of the step.
At times these functions need to be executed before the job or process can continue and some sort of completion
indication needs to be passed back and forth between the invoked EXEC and the step.

AOSUBX (like IMFSUBEX) meets these requirements. It represents a high speed path to EXEC invocation on either

local or remote systems and allows the caller to wait for the completion of this EXEC, returning the exit code of the
invoked EXEC as a modified return code.

Syntax

The general syntax for invoking AOSUBX from a jobstep is as follows:

//STEPX EXEC PGM=AOSUBX,PARM="parms...”
//STEPLIB DD DISP=SHR,DSN=prefix. .BBLINK

Theparms entered must specify the EXEC() and SS | SSID() keywords whereas the TGTSS() and WAIT() keywords
are optional. The description of the keywords follows.

Keyword Required/ Description
Optional
EXEC Required Specifies the name of the EXEC and any parameters to be passed|to the

symbolic variables defined as input in the EXEC.

Maximum length is any number of characters allowed by the PARM=
statement.

Note that the SS | SSID() parameter is required.

SS | SSID() Required Specifies a BBI-SS PAS to process this EXEC or the name of a logal
BBI-SS PAS that will route the request to a remote BBI-SS PAS (as
specified by the TARGET|TGTSS() keyword).

Chapter 9. Performing Automation Using AOAnywher33

Keyword Required/ Description
Optional

TARGET|TGTSS() Optional Specifies the name of a remote BBI-SS PAS where the request is {o be
routed. Sysplex connectivity between the local and remote BBI-SS RAS
must be available.

The target BBI-SS PAS must be in the same sysplex as the BBI-SS
specified with the SSID() keyword, and both systems must have the same
XCFGROUP specified in the BBPARM BBISSPxx.

WAIT() Optional Specifies whether to wait for the completion of the EXEC or continu
after scheduling. Note that WAIT(Y) is required to obtain the exit codq of
the EXEC.

1%

Return codes are listed in the following table.

Value Description

-1 When the TGTSS() keyword is used, indicates that either the request timed out or the|target
system was shut down in the middle of a request.

0 Command was executed successfully.

8 EXEC you are trying to invoke does not exist.

16 Syntax error occurred.

32 No XCF connection exists between the subsystem specified with the SS | SSID() keyword

and the subsystem specified using the TGTSS() keyword. The target subsystem is most
likely not active or not in the same sysplex as originating subsystem.

36 The local BBI-SS PAS specified by the SSID parameter is not available.

40 Security definitions disallowed access to this function on the specified subsystem.
48 Incompatible AOAnywhere versions exist.

52 An attempt was made to execute this function under NetView without a valid

Access/NetView product key.

2048 + return codes When specifying WAIT(Y) and the command was executed successfully, a value 2048 is
added to the EXEC's exit code before the return code is generated.

Examples

EXEC(TEST A B C D()) SSID(RE61) TGTSS(RE62) WAIT(Y)

An EXEC with the name ofEST will be invoked, passing the parametérg8 C D() . Note that parentheses are
allowed. A BBI-SS PAS with the SSID &E£61 must be active on the same MVS image that will route the request to
another BBI-SS PAS with an SSID RE£62.

The step will wait until the EXEC ends and a return code of 2048 plus the exit code of the EXEC is returned. For
example, if the EXEC ended with an IMFEXEC EXIT CODE(12), the step receives a return code of 2060 (2048+12).

134 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

AOEXEC Commands

The following table lists the IMFEXEC AOEXEC commands and the page where you can find more information.

that can

em

ols

e of

R

R

the

Command Page Function

AOEXEC ALERT 137 Creates and manages exception messages and message queues
be displayed by any of the STATUS applications and ALERT
Management Facility applications.

AOEXEC MSG 161 Logs a message in the BBI-SS PAS Journal log.

AOEXEC NOTIFY 163 Sends a request through AutoOPERATOR to issue a pager call using the
MAINVIEW AutoOPERATOR Elan Workstation component (if it is
installed).

AOEXEC SELECT 165 Invokes an EXEC or a program.

AOEXEC SYSINFO 167 Searches the current MVS image for an AutoOPERATOR subsys
that runs AOAnywhere support.

AOEXEC VDEL 171 Deletes one or more variables from one of the AutoOPERATOR
variable pools.

AOEXEC VGET 174 Copies one or more variables from one of the AutoOPERATOR pg
into the EXECs function pool.

AOEXEC VLST 176 Lists variable names defined in the AutoOPERATOR pools.

AOEXEC VPUT 179 Copies one or more variables from the EXECs function pool into or
the AutoOPERATOR pools.

AOEXEC VDELL 181 Deletes one or more long variables from one of the AutoOPERAT(
variable pools.

AOEXEC VGETL 183 Copies one or more long variables from one of the AutoOPERATQ
pools into the TSO pool.

AOEXEC VLSTL 185 Retrieves a long variable from the specified pool and places it into
TSO pool.

AOEXEC VPUTL 187 Creates or sets a long variable from a variable in the TSO pool.

Chapter 9. Performing Automation Using AOAnywherg35

General Coding Conventions

The following sections briefly describe the coding conventions for using the AOEXEC command statements.

The command syntax is the keyword AOEXEC, followed by the command and any necessary parameters; for
example:

AOEXEC command [parameters]

Using Variable Names

Variable names are limited to 32 characters in length except where noted. The first character of the variable must be
alphanumeric or one of the following special characters:

3
c @
. #

Reading Return Codes

All AOEXEC commands return values in return codes that are listed with each AOEXEC command. The values are
returned differently depending on where the AOEXEC command is issued from. For example, if the AOEXEC
command is used in a REXX EXEC, the return code will be returned in the RC variable. If the AOEXEC command is
used in a CLIST EXEC, the return code is returned in &LASTCC.

Understanding Command Statement Syntax

Each AOEXEC command statement description includes a table describing the parameters for the command. The
table uses the following format:

Parameter Function Notes

1 2 3

The numbers in this table correspond to the following descriptions:

1 A short parameter identifier. If the parameter has uppercase letters, this identifier must be coded exactly as
shown.

If parts of the identifier are shown liold, this parameter can be abbreviated, using the bold letters.

Positional parameters are not associated with a specific identifier. In these cases, this column contains an alias
that describes the parameter.

2 The function of the parameter.

3 Notes about the parameter. Typically, these notes describe any length, value, range, or string limitations.

136 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

AOEXEC ALERT

AOEXEC ALERT

This command manages exception messages and message queues that can be displayed by any of the STATUS
applications and ALERT Management Facility applications.

Command Parameters

AOEXEC ALERT | [KEY()]

[TEXT('text string")]

[ALARM(YES|NO)]
[COLOR(REDIPINK|YELLOW|DKBLUELTBLUE|GREEN|WHITE)]
[DISPOSEKEEP|DELETE)]

[ESCALATE(UP|DOWN)]

[ESCEXEC(‘'execname pl p2 p3 ... pn’)]

[EXEC(‘execname pl p2 p3 ... pnY)]
[FUNCTION(ADD|COUNT|CREATEQ|DELETE|DELETEQ|LISTQ|READQ)]
[HELP(panelname)]
[INTERVAL(nnnn,nnnn,nnnn,nnnn,nnnn,nnnn)]j

[PCMD('cmd string")]

[POSITION(position)]
[PRI(CRITICAL|IMAJOR|MINOR|WARNINGINFORMATIONAL |CLEARING)]
[PUBLISH(REPLACERDDI|NO]

[QUEUE(MAIN|queue name)]

[RETAIN(YES|NO)]

SS | SSID(subsystem identifier)

[SYSTEM(YESNO)]

[TGTSS(target subsystem identifier)]

[ORIGIN(origin)]

[UDATA('user data')]

[USER(user name)]

Chapter 9. Performing Automation Using AOAnywherg37

AOEXEC ALERT

The following table describes the parameters.

Parameter

Function

Notes

KEY

The key used to uniquely identify an
ALERT within a queue

Maximum length is 64 alphanumeric
positions. Required for

FUNCTION(ADD)
FUNCTION(DELETE)

Optional for

FUNCTION(READQ)

You must specify a unique key for every
ALERT you create. If you create a second
ALERT with the same key as an already
existing ALERT in the queue, the second
ALERT will overwrite the first ALERT.

TEXT

The text of the ALERT message

Maximum message length is 255
alphanumeric positions. Required for:

FUNCTION(ADD)

If the contents of the text are null but
specified (for example, zero length), the
ALERT text is replaced by N/A. A
specification of /N within the alert text
forces a line break. You must include a
blank space before and after using /N.

This parameter applies also to the READ
and COUNT functions. Only ALERTSs
matching this text string are considered
during these operations.

ALARM

An audible alarm emitted from the termina
on the ALERT Detail application

| Possible values are

YES Sound alarm.
NO Do not sound alarm.

NO is the default.

138 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

AOEXEC ALERT

Parameter Function Notes
COLOR|COL The color in which the ALERT is displayef This parameter does not have any impact
in the ALERT DETAIL and STATUS upon the ALERT OVERVIEW application.
applications (overrides default color
associated with ALERT priority) When an ALERT's priority is increased or
decreased (with the ESCALATE
parameter), the new ALERT priority’s colof
will change to the color in the following list:
RED - CRITICAL
PINK - MAJOR
YELLOW - MINOR
DKBLUE - WARNING
LYBLUE - INFORMATIONAL
GREEN - CLEARING
DISPOSE Allows you to specify whether an ALERT |sThis keyword must be used with the
kept or deleted when it has reached its finaINTERVAL keyword.
escalation priority level
Possible values are
KEEP Keep the ALERT in its
queue.
DELETE Delete the ALERT from
the queue.
KEEP is the default.
The variable AMFEDISP returns the value
of this keyword.
ESCALATE Allows you to create ALERTS that can This keyword must be used with the

change in priority over a specified interva
of time

INTERVAL keyword.
Possible values are

UP The ALERT priority is
upgraded from less critical
to more critical.

The ALERT priority is
downgraded from more
critical to less critical.

DOWN

UP is the default.

The variable AMFEDIR returns the value df
this keyword.

Chapter 9. Performing Automation Using AOAnywher39

AOEXEC ALERT

1]

Parameter Function Notes
ESCEXEC Allows you to specify an EXEC (with This keyword must be used with the
parameters) that is scheduled when the | INTERVAL keyword.
ALERT reaches its final priority level
The variable AMFEEXEC returns the valu
of this keyword.
EXEC The name of the ALERT-initiated follow-up Maximum length is 256 characters.

EXEC and its parameters

Refer to “Parameters Passed to the EXE(
on page 29 for more information about
parameters passed to ALERT-initiated
EXECs.

~

FUNCTION|FUN

The function to be performed

Use the FUNCTION keyword with

- ADD
- COUNT

« CREATEQ
- DELETE
- DELETEQ
« LISTQ

- READQ

For more information about these functio
and the return codes they generate, refer
Table 8 on page 146.

1S

HELP

The name of an extended help panel

Maximum length is 8 characters.

This help panel is displayed when you ent
the EXPAND primary command in the
ALERT DETAIL application while the
cursor is positioned on the ALERT. The
help panel is a text member without any
formatting or control characters.

The help text member must be included t
BBPLIB concatenation for the terminal

ne

session.

140 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

AOEXEC ALERT

b

=4

Parameter Function Notes
INTERVAL Allows you to specify one to six intervals of This keywordmust be usedwith the
time over which the priority of an ALERT | ESCALATE keyword and you must specify
will change at least one interval for an ALERT when
ESCALATE is specified. The variables
An ALERT’s priority can either increase | AMFEINT1 through AMFEINT®6 return the
(become more critical) or decrease (becomealues associated with this keyword.
less critical) in priority over the specified
time intervals. In addition, when you want to have an
ALERT change in priority, you must alway$
The interval can be specified from 0 to 9999code one interval more than the number ¢
minutes. At least one interval must be changes. No priority changes occur in the
specified for an ALERT when ESCALATE| last interval.
is specified.
For example, if you want an ALERT to
When the final interval expires change from MAJOR to CRITICAL, you
) - must code two interval periods.
* The action specified by the DISPOSH
keyword occurs (either the ALERT is | pefer to “Examples of ALERT Escalation’
deleted or kept) on page 156 for examples.
« If an EXEC is specified with the
ESCEXEC keyword, the EXEC is
scheduled
ORIGIN A new origin to assign to this ALERT A 1- to 8-character user-defined origin

is assigned to the ALERT.

The first character cannot be a numeric.
This user-defined origin overrides the
EXEC’s IMFSYSID (or the originating job

hat

name for the EXEC).

Chapter 9. Performing Automation Using AOAnywherg41

AOEXEC ALERT

Parameter

Function

Notes

PCMD

A command to be executed if the termina
operator uses the TRANSFER command
the ALERT DETAIL panel

| Any command that is valid from the
DICOMMAND line is a valid value for this
parameter.

Maximum length is 256 characters.

PCMD is executed as if it were entered o
the COMMAND line. You should use the
SYSTEM parameter (described below) or
include the BBI SYSTEM command for
ALERTS that contain PCMD to ensure th3
the target field of the transferred-to
application will be correct. If you use the
SYSTEM parameter, the SYSTEM
command is executed after all other
commands specified with PCMD have
executed.

For example:
PCMD("CICS;EX TRAN;SYSTEM SYSA®)
Note that if you have blanks in the PCMD|

statement, you must use single quotation
marks.

h

POSITION|POS

The order of the ALERT in the queue to
read

Valid values are in the range from 1 to
32,767.

This parameter is used only with the
READQ function.

PRIORITY

The priority of the ALERT

A valid value is one of the following
options:

CRITICAL
MAJOR

MINOR
WARNING
INFORMATIONAL
CLEARING

142 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

AOEXEC ALERT

Parameter

Function

Notes

PUBLISH

Specifies whether an ALERT is publisheg
and how it is published to connected
PATROL Enterprise Manager (PATROL
EM) workstations that have subscribed to
receive ALERTSs through the General
Message Exchange (GME).

Possible values are

REPLACE An ALERT REPLACE
command for the ALERT’s
key/queue is sent to all
PATROL EM workstations
that have subscribed to
receive ALERTS from this
AutoOPERATOR. If there is
already an ALERT with that
key/queue on a PATROL EM
workstation, it is deleted
before writing the new
ALERT with that key/queue.

An ALERT ADD command
is sent to all workstations tha
have subscribed to receive
ALERTS from this
AutoOPERATOR. If there is
already an ALERT with that
key/queue on a PATROL EM
workstation, it is not deleted
before writing the new
ALERT with that key/queue.

ADD

ADD is the default.

The ALERT is not written to
the connected PATROL EM
workstations even if they
have subscribed to receive
ALERTS.

NO

[

QUEUE|QUE

The name of the queue to access or into
which to place the ALERT

Length can be 1 - 8 characters; embedde
blanks are valid.

Chapter 9. Performing Automation Using AOAnywher#43

AOEXEC ALERT

O

et

to

&N

Parameter Function Notes

RETAIN Allows you to specify that an ALERT will | Possible values are
be retained across BBI-SS PAS restarts
(both cold and warm restarts) and MVS | YES Retain this ALERT in disk space s
IPLs. that it can survive a BBI-SS PAS

warm or cold start.
Note that using this parameter causes the NO Do not retain this ALERT to survive
ALERT to be written to DASD. Therefore, BBI-SS PAS warm or cold starts.
you should use this parameter only after .
careful consideration. A BBI-SS PAS NO is the default.
(warm or cold) start or MVS IPL might .
eliminate the exceptional situation that ALERTSs that spe_c|fy RETAIN(YES)
caused the ALERT in the first place. cannot also specify the INTERVAL
keyword.
In other words, ALERTS that are to be
retained across BBI-SS PAS restarts or
MVS IPLs cannot change priority (either
increase or decrease).
The variable AMFRTAIN returns the valug
of this keyword.

SS | SSID SS | SSID() specifies the subsystem Required keyword.
identifier of a local subsystem. If TGTSS(
is not specified, this is the subsystem wheére
the requested function is executed.

SYSTEM Determines whether the ALERT DETAIL | The defaultis YES, switch the current targ
processor switches the current target to theo the origin of the ALERT when processin
origin of the ALERT when processinga | a TRANSFER (PCMD).

TRANSFER (PCMD).
NO specifies do not switch current target
the origin of the ALERT when processing
TRANSFER (PCMD).
The target is changed to reflect what was
coded in the ORIGIN parameter or the
AutoOPERATOR SSID.

TGTSS If the TGTSS() keyword is specified, the | Optional keyword.
subsystem specified by the SS | SSID()
keyword is considered a router and the It must be in the same sysplex as the BBI-
actual function is executed on the subsystersS specified with the SSID() keyword, an
specified by TGTSS(). If TGTSS() is not | both systems must have the same
specified, the requested function is executeXCFGROUP specified in the BBPARM
on the subsystem specified by the SS | SSIBBISSPxx.
keyword.

144 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

AOEXEC ALERT

Parameter Function Notes
UDATA Any desired user data string Maximum length is 256 bytes
The contents of the UDATA field can be
retrieved using the READQ function.
USER The name of the user ID to which the A 1 - 8 character valid BBI-TS user ID.

ALERT is addressed

Contents of the user field can be used to
tailor ALERT DETAIL displays using the
ALERT DETAIL PROFILE panel. Refer to
the “ALERT Management Facility” chaptef
in theMAINVIEW AutoOPERATOR Basic
Automation Guiddor more information.

Chapter 9. Performing Automation Using AOAnywherg45

AOEXEC ALERT

Return Codes for FUNCTION Keywords

The following table lists and describes in alphabetical order the return codes for the different functions that can be
used with the FUNCTION keyword in an AOEXEC ALERT EXEC statement.

Table 8. FUNCTION Names and Return Codes

FUNCTION | Description Return Return Code Description
Code
Value
ADD Adds an ALERT to a queue and -1 When the TGTSS() keyword is used,
creates a new queue if one does specifies that either the request timed out ar
not already exist the target system was shut down in the middle
of a request.
0 ADD was successful.
16 Invalid syntax used.

20 ALERT queue is full.

32 No XCF connection exists between the
subsystem specified with the SS | SSID()
keyword and the subsystem specified using
the TGTSS() keyword. The target subsystem
is most likely not active or not in the same
sysplex as the originating subsystem.

36 The subsystem specified using the SS |
SSID() keyword cannot be found on the loca

system.

40 Security definitions disallowed access to this
function on the specified subsystem.

48 Incompatible AOAnywhere versions exist.

52 An attempt was made to execute this functipn

under NetView without a valid
Access/NetView product key.

146 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Table 8. FUNCTION Names and Return Codes (Continued)

AOEXEC ALERT

under NetView without a valid
Access/NetView product key.

FUNCTION | Description Return Return Code Description
Code
Value
COUNT Counts the numbers of ALERTsin -1 When the TGTSS() keyword is used,
a given queue. specifies that either the request timed out ar
the target system was shut down in the middle
Refer to “TSO Variables Returned of a request.
from COUNT” on page 154 for _ X
more information. 0 COUNT _/vas s_uccessful, count value is
returned in variable AMFCOUNT.

8 Queue does not exist.

16 Invalid syntax used.

32 No XCF connection exists between the
subsystem specified with the SS | SSID()
keyword and the subsystem specified using
the TGTSS() keyword. The target subsystem
is most likely not active or not in the same
sysplex as the originating subsystem.

36 The subsystem specified using the SS |
SSID() keyword cannot be found on the local
system.

40 Security definitions disallowed access to this
function on the specified subsystem.

48 Incompatible AOAnywhere versions exist.

52 An attempt was made to execute this functipn

Chapter 9. Performing Automation Using AOAnywher&47

AOEXEC ALERT

Table 8. FUNCTION Names and Return Codes (Continued)

i

e

)
m

=

is

FUNCTION | Description Return Return Code Description
Code
Value
CREATEQ Creates a new ALERT queue. -1 When the TGTSS() keyword is used,
specifies that either the request timed out @
the target system was shut down in the midd
of a request.

0 Queue was created successfully.

4 Queue already exists.

16 Invalid syntax used.

32 No XCF connection exists between the
subsystem specified with the SS | SSID()
keyword and the subsystem specified using
the TGTSS() keyword. The target subsyste
is most likely not active or not in the same
sysplex as the originating subsystem.

36 The subsystem specified using the SS |
SSID() keyword cannot be found on the loc
system.

40 Security definitions disallowed access to th
function on the specified subsystem.

48 Incompatible AOAnywhere versions exist.

52 An attempt was made to execute this functi

under NetView without a valid

Access/NetView product key.

148 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Table 8. FUNCTION Names and Return Codes (Continued)

AOEXEC ALERT

under NetView without a valid
Access/NetView product key.

FUNCTION | Description Return Return Code Description
Code
Value
DELETE Deletes an ALERT by the ALERT] -1 When the TGTSS() keyword is used,
key. specifies that either the request timed out ar
the target system was shut down in the middle
of a request.

0 DELETE was successful.

4 ALERT does not exist.

8 Queue does not exist.

16 Invalid syntax used.

32 No XCF connection exists between the
subsystem specified with the SS | SSID()
keyword and the subsystem specified using
the TGTSS() keyword. The target subsystem
is most likely not active or not in the same
sysplex as the originating subsystem.

36 The subsystem specified using the SS |
SSID() keyword cannot be found on the local
system.

40 Security definitions disallowed access to this
function on the specified subsystem.

48 Incompatible AOAnywhere versions exist.

52 An attempt was made to execute this functipn

Chapter 9. Performing Automation Using AOAnywher&49

AOEXEC ALERT

Table 8. FUNCTION Names and Return Codes (Continued)

i

e

)
m

=

is

FUNCTION | Description Return Return Code Description
Code
Value
DELETEQ Deletes an ALERT queue. -1 When the TGTSS() keyword is used,
specifies that either the request timed out @
the target system was shut down in the midd
of a request.

0 DELETEQ was successful.

4 Queue does not exist.

16 Invalid syntax used.

32 No XCF connection exists between the
subsystem specified with the SS | SSID()
keyword and the subsystem specified using
the TGTSS() keyword. The target subsyste
is most likely not active or not in the same
sysplex as the originating subsystem.

36 The subsystem specified using the SS |
SSID() keyword cannot be found on the loc
system.

40 Security definitions disallowed access to th
function on the specified subsystem.

48 Incompatible AOAnywhere versions exist.

52 An attempt was made to execute this functi

under NetView without a valid

Access/NetView product key.

150 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Table 8. FUNCTION Names and Return Codes (Continued)

AOEXEC ALERT

under NetView without a valid

FUNCTION | Description Return Return Code Description
Code
Value
LISTQ Lists (in TSO variable IMFNOL) -1 When the TGTSS() keyword is used,
the number of ALERT queues specifies that either the request timed out ar
present in the target subsystem. the target system was shut down in the middle
of a request.
Refer to “TSO Variables Returnedt I
from LISTQ” on page 154 for 0 LISTQ was successful; ALERT queue datal|is
more information. returned.

16 Invalid syntax used.

32 No XCF connection exists between the
subsystem specified with the SS | SSID()
keyword and the subsystem specified using
the TGTSS() keyword. The target subsystem
is most likely not active or not in the same
sysplex as the originating subsystem.

36 The subsystem specified using the SS |
SSID() keyword cannot be found on the local
system.

40 Security definitions disallowed access to this
function on the specified subsystem.

48 Incompatible AOAnywhere versions exist.

52 An attempt was made to execute this functipn

Access/NetView product key.

Chapter 9. Performing Automation Using AOAnywherg51

AOEXEC ALERT

Table 8. FUNCTION Names and Return Codes (Continued)

under NetView without a valid
Access/NetView product key.

FUNCTION | Description Return Return Code Description
Code
Value
READQ Reads an ALERT from the queu¢ -1 When the TGTSS() keyword is used,
and returns the characteristics ofi specifies that either the request timed out ar
the ALERT in TSO variables. the target system was shut down in the middle
of a request.
Refer to “TSO Variables Returned
from the READQ Parameter” for 0 READQ was successful; ALERT data
more information. returned.

4 Either no match was found when using KEY
and TEXT criteria or the search ran past the
end of the queue when using the POSITION
keyword.

8 Queue does not exist.

16 Invalid syntax used.

32 No XCF connection exists between the
subsystem specified with the SS | SSID()
keyword and the subsystem specified using
the TGTSS() keyword. The target subsystem
is most likely not active or not in the same
sysplex as the originating subsystem.

36 The subsystem specified using the SS |
SSID() keyword cannot be found on the local
system.

40 Security definitions disallowed access to this
function on the specified subsystem.

48 Incompatible AOAnywhere versions exist.

52 An attempt was made to execute this functipn

TSO Variables Returned from the READQ Parameter

The following table lists the TSO variables returned from the READQ parameter.

Name

Contents

Maximum
Length/Format

Example

AMFALARM

Alarm value of the alert

1/Y (YES)orN| Y
(NO)

AMFCOLOR

Color of ALERT

6 / As specified
by COLOR
parameter

RED

152 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

AOEXEC ALERT

Name Contents Maximum Example
Length/Format
AMFEDIR Increase or decrease the priority ¢f1 / Character U | D
the ALERT when it is escalated | (up) or D (down)
AMFEDISP Keep or delete the ALERT at the| 1 / Character (K | K
final escalation level or D)
AMFEEXEC Name of EXEC and EXEC 0-256 / Characterj ALRTEXEC
parameters scheduled at final
escalation priority
AMFEINT1 Number (in minutes) from 0 to 4 [Numeric (or | 15
AMFEINT2 9999 null)
AMFEINT3
AMFEINT4
AMFEINT5
AMFEINT6
AMFEXEC EXEC and EXEC parameters 0-256 / Character; DBSTART SHIFT2
associated with the ALERT
AMFHELP Extended Alert member name 8 / Character HELPXT2
AMFIDATE Date ALERT was issued 9/DD-MMM- | 14-FEB-92
YY
AMFITIME Time ALERT was issued 8 / hh:mm:ss 12:02:24
AMFKEY Key of the ALERT 1-64 / Character DASDO1
AMFORGN Origin of ALERT 1-8 / Character CICSPROD
AMFPCMD Primary command specified in 0-256 / Character; CICS; EX TRAN
ALERT
AMFPRIOR Priority of ALERT 13/ As specified| INFORMATIONAL
in PRIORITY
parameter
AMFPSYS Value for SYSTEM keyword 1/ Character (Y | Y
(could be either YES or NO) or null)
AMFPUB Value of the PUBLISH keyword | 2-7/ADD, ADD
when an ALERT is created REPLACE, or
NO
AMFQUEUE Name of queue for ALERT 8 / Character MAIN
AMFRTAIN Specifies whether to retain an 1/ Character (Y | Y
ALERT across BBI-SS PAS warm or N)
and cold starts
AMFSSID System from which ALERT was | 8 / Character SYSB
issued
AMFTEXT Text of the ALERT 0-255/ Character This ALERT is a test

Chapter 9. Performing Automation Using AOAnywher&53

AOEXEC ALERT

Name Contents Maximum Example
Length/Format
1-8 / Character IMS22P

Target to which ALERT was

AMFTGT
issued
AMFUDATA User data string 0-256 / Character Any value specified in UDATA
parameter
AMFUSER Name of the user ID to which thg 8 / Character JDB1
ALERT is addressed

TSO Variables Returned from COUNT

The following table lists the TSO variables returned from the COUNT parameter.

Contents
Number of ALERTS in designated queue

Name

AMFCOUNT

TSO Variables Returned from LISTQ

The following table lists the TSO variables returned from the LISTQ parameter.

Name Contents
IMFNOL Number of queues present in the target subsystem. In variables LINE1 through LINExxx, it
returns the names of the all the queues. Limit is 500 queue names.

154 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

AOEXEC ALERT

Examples
This section describes examples using the AOEXEC ALERT command. A brief discussion follows each example.

Example 1: Creating a Multiline ALERT.

"AOEXEC ALERT KEY(NETW2) ",
"TEXT(”COMMUNICATION LINES DOWN: /N - DALLAS /N - CHICAGO®) ™,
"FUNCTION(ADD) QUEUE(NETWORK) "',
"PRIORITY(CRITICAL) COLOR(PINK) SSID(RE61)"

ALERTS are created as single-line messages unless you use the chakaicithe alert text parameter. The
character#N indicate the beginning of a new line of alert text.

You must use a blank space before and aftedn the example above, the alert text parameters includes the dsle of
in two places. The EXEC command in this example produces the following multiline ALERT:

11:43 CHICAGO COMMUNICATION LINES DOWN:
- DALLAS
- CHICAGO

Example 2: Associating a Help Panel with an ALERT.

"AOEXEC ALERT KEY(NETW1) ",
"TEXT(ALMO100 - 8100 COMMUNICATION LINE DOWN: /N - CHI998A21%) ™,
"FUNCTION(ADD) QUEUE(NETWORK) PRIORITY(WARNING) HELP(H8100) ',
""COLOR(RED) SSID(RE61)"

Use the HELP keyword of the AOEXEC ALERT command statement to indicate there is a help panel associated with
an ALERT.

Prior to using the HELP keyword in the AOEXEC ALERT command, you must create and add the help panel to
BBPLIB. The HELP keyword specifies the name of the BBPLIB member name. The example shows an AOEXEC
ALERT command statement that specifies a help panel named H8100. The example is a REXX statement and
therefore uses double quotation marks. The ALERT created by the EXEC appears on the ALERT DETAIL panel in
the following format:

TIME IND ORIGIN
11:44 h CHICAGO ALMO100 8100 COMMUNICATION LINE DOWN:
-CHI998A21

The ALERT is displayed with amin the IND column. Thish indicates that there is a help panel associated with the
ALERT.

To access the help panel, place the cursor anywhere on the ALERT text and press the PF key assigned to EXPAND.

You can also type EXPAND on the COMMAND line and then place the cursor anywhere on the ALERT text and
press ENTER.

Chapter 9. Performing Automation Using AOAnywher&55

AOEXEC ALERT

Example 3: Managing ALERT Queues.

/* REXX */
"AOEXEC VGET VAR(THRSHOLD) SSID(RE61)"
"AOEXEC ALERT FUNCTION(COUNT) QUEUE(NETWORK) SSID(RE61)"
n=amfcount
do while n >0
"AOEXEC ALERT FUNCTION(READQ) QUEUE(NETWORK) POSITION('N'™) SSID(RE61)"
if rc=0 then do
iT amfudata > thrshold then do
"AOEXEC ALERT KEY("'amfkey') FUNCTION(DELETE) QUEUE(NETWORK) SSID(RE61)"
"AOEXEC ALERT KEY("'amfkey') FUNCTION(ADD) TEXT(""amftext"") QUEUE(SUPERVSE)”,

“SSID(RE61)"
END
END
n=n-1
END

You can periodically check the queues for ALERTSs that have not been responded to and escalate their priority.

In the above EXEC, the READQ function is used to set AMFCOUNT equal to the number of ALERTSs in the
NETWORK queue. The EXEC then reads each ALERT from the NETWORK queue using POSITION and tests the
user data presented in the AMFUDATA variable.

If the criteria is met, the ALERT is deleted from the NETWORK queue using the AMFKEY variable (the key of the
ALERT). Then the ALERT is added to the supervisor's queue using the same key and using the original text in the
AMFTEXT variable.

Note: This example assumes that the ALERTSs were originally created with some meaningful user data (such as the
date and time).

Examples of ALERT Escalation

The following examples show how to create ALERTSs with the ESCALATE parameter so that an ALERT can
increase or decrease in priority over specified intervals of time.

Example 1: Escalating an ALERT from lowest to highest priority: The ALERT in this example will be
upgraded from Informational to Critical priority over five intervals. The following list describes the properties of the
ALERT:

e The original priority of the ALERT is Informationa®§10RITY (info)).
e The ALERT’s priority will be upgradectécalate(up)).

e The priority will be upgraded gradually over the intervals of 10 minutes, 20 minutes, 30 minutes, 30 minutes, and
40 minutes [nterval (10,20,30,30,40)).

« When the ALERT reaches the final priority level, the ALERT should be deispdse(delete)).

"AOEXEC ALERT KET(KEY1) TEXT("test alert®) PRIORITY(INFO) ESCALATE(UP)" ,
" INTERVAL(10,20,30,30,40) DISPOSE(DELETE) SSID(RE61)"
1 2 3 4 5

When the EXEC that is associated with this ALERT is scheduled, the ALERT’s original priority is Informational.
After 10 minutesX), the priority is upgraded automatically from Informational to Warning. The ALERT stays at the

156 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

AOEXEC ALERT

Warning priority for 20 minutes2) and is upgraded to Minor. The ALERT stays at Minor priority for 30 minugs (
before being upgraded to Major. It stays at Major priority for 30 minugdéfore being upgraded to Critical. After
remaining at Critical for 40 minuteS)(the ALERT is deleted.

Example 2: Downgrading ALERT priority over two intervals: The ALERT in this example will be
downgraded over two intervals. The following list describes the properties of the ALERT:

e The original priority of the ALERT is MinoPRIORITY (MINOR)).
e The ALERT’s priority will be downgraded§CALATE(DOWN)).
e The priority will be downgraded over the intervals of 10 minutes and 20 miniesRVAL(10,20)).

« When the ALERT reaches the final priority level, the ALERT should be deetS8ESE(DELETE)).

"AOEXEC ALERT KEY(KEY2) TEXT("test alert”) PRIORITY(MINOR) ESCALATE(DOWN) " ,
"INTERVAL(10,20) DISPOSE(DELETE) SSID(RE61)"
1 2

When the EXEC that is associated with this ALERT is scheduled, the ALERT'’s original priority is Minor. After 10
minutes L), the priority is downgraded automatically from Minor to Warning. The ALERT remains at the Warning
priority for 20 minutesZ) and is deleted at the end of the interval.

The intervals in this example also can be validly coded as follows:
INTERVAL(10,20,)

or

Interval (10,20, ,)

or

Interval (10,20,,,,)

Example 3: Upgrading an ALERT and scheduling an escalation EXEC: The ALERT in this example will
be upgraded over two time intervals and, at the end of the second interval, an escalation EXEC will be scheduled. The
following list describes the properties of the ALERT:

e The original priority of the ALERT is MinoPRIORITY (MINORY)).
e The ALERT’s priority will be upgradecEGCALATE(UP)).
e The priority will be upgraded over the intervals of 10 minutes and 20 mir&BRVAL (10, 20)).

« When the ALERT reaches the final priority level, the ALERT should be kept until it is manually deleted
(DISPOSE(KEEP)).

¢ When the ALERT completes its final interval, an EXEC named E100 with three parameters is scheduled
(ESCEXEC("E100 pl p2 p3T)).

"AOEXEC ALERT KEY(KEY2) TEXT(test alert”) PRIORITY(MINOR) ESCALATE(UP) ",
"INTERVAL(10, 20) DISPOSE(KEEP) ESCEXEC(’E100 pl p2 p3~)"
1 2

Chapter 9. Performing Automation Using AOAnywherg&57

AOEXEC ALERT

When the EXEC that schedules this ALERT is scheduled, the ALERT’s original priority is Minor. After 10 minutes
(2), the priority is upgraded automatically from Minor to Major. The ALERT remains at the Major priority for 20
minutes) and the EXEC e100 with its three parameters is scheduled at the end of the interval. The ALERT remains
at the Major priority until it is manually deleted.

Example 4: Skipping ALERT priorities during ALERT escalation: The ALERT in this example will be
upgraded from Informational to Major while skipping the intermediate ALERT priorities. The following list
describes the properties of the ALERT:

The original priority of the ALERT is Information€®RI1ORITY (INFO)).
e The ALERT’s priority will be upgradedc6CALATE(UP)).
e The priority will be upgraded over the two intervals of 10 and 20 minutes.

However, to skip ALERT priorities, you must specify an interval of zero minutes for each of the intervals you
want to skip.

In this example, the ALERT will skip two priorities and change from Informational priority directly to Major after a
10-minute interval INTERVAL(10,0,0,20)).

« When the ALERT reaches the final priority level, the ALERT should be kept until it is manually deleted
(DISPOSE(KEEP)).

* When the ALERT completes its final interval of 20 minutes, an EXEC named E100 with three parameters is
scheduled§SCEXEC("E100 pl p2 p37)).

"AOEXEC ALERT KEY(KEY2) TEXT(test alert”) PRIORITY(INFO) ESCALATE(UP) ",
"INTERVAL(10,0,0,20) DISPOSE(KEEP) ESCEXEC(’E100 pl p2 p3”) SSID(RE61)"
1234

When the EXEC that schedules this ALERT is scheduled, the ALERT's original priority is Informational. After 10
minutes L), the ALERT’s priority is upgraded automatically from Informational to Major. To skip the intermediate
priorities, you must code zero minutes for both Warning and Minor prioriiasd3).

The ALERT remains at the Major priority for 20 minutds énd the EXEC 100 with its three parameters is
scheduled at the end of the interval. The ALERT remains at the Major priority until it is manually deleted.

The intervals in this example also can be validly coded as follows:
INTERVAL(10,0,0,20,)

or

INTERVAL(10,0,0,20,,)

Example 5: Showing the elapsed time for an escalated ALERT. The ALERT in this example will be
upgraded from Minor to Major in one 10-minute interval. The following list describes the properties of the ALERT:

e The original priority of the ALERT is MinoiPRIORITY (MINOR)).

e The ALERT’s priority will be upgradedc6CALATE(UP)).

e The priority will be upgraded over one interval of 10 minut&SERVAL (10)).

* When the ALERT reaches the final priority level, the ALERT should be delelS8{SE(DELETE)).

158 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

AOEXEC ALERT

e When the ALERT completes its final interval, an EXEC named E100 with three parameters is scheduled
(ESCEXEC("E100 pl p2 p3T)).

"AOEXEC ALERT KEY(KEY2) TEXT(test alert”) PRIORITY(MINOR) ESCALATE(UP) ",
"INTERVAL(10, 20) DISPOSE(DELETE) ESCEXEC(’E100 pl p2 p3”) SSID(RE61)"

The following example shows the life of the ALERT over time:

1:00pm 1:10pm 1:30pm
A Minor ALERT --> The ALERT is upgraded -—> The ALERT is deleted
is created to Major Priority and the EXEC el100

is scheduled
The ALERT stays at this The ALERT stays at this
priority for 10 minutes priority for 20 minutes

Examples of Invalid Coding with the Interval Parameter
Some examples of invalid coding are as follows:

Example 1: The interval keyword must contain at least one value.

"AOEXEC ALERT KEY(KEY4) TEXT(test alert”) PRIORITY(MAJOR) ESCALATE(UP) ",
"INTERVAL(, 10, 10) SSID(RE61)"

Example 2: You can only specify as many intervals as there are between an originating priority and the end priority.

"AOEXEC ALERT KEY(KEY4) TEXT(’test alert”) PRIORITY(INFO) ESCALATE(UP)",
"INTERVAL(, 10,,20) SSID(RE61)"

In example 2, there is only one priority that a major ALERT can be upgraded to (Critical) and yet three intervals are
specified.

Example 3: The interval keyword cannot have null values for intervals.

"AOEXEC ALERT KEY(KEY4) TEXT(’test alert’) PRIORITY(MAJOR) ESCALATE(UP)”
“INTERVAL(,10,10) SSID(RE61)"

or

"AOEXEC ALERT KEY(KEY4) TEXT(test alert”) PRIORITY(INFO) ESCALATE(UP)”
“INTERVAL(, 10, ,20) SSID(RE61)"

Example 4: The intervals cannot have negative values.

"AOEXEC ALERT KEY(KEY4) TEXT(test alert®) PRIORITY(INFO) ESCALATE(UP)" ,
"INTERVAL(, 10,-20) SSID(RE61)"

Chapter 9. Performing Automation Using AOAnywher&59

AOEXEC ALERT

Examples of the PUBLISH Parameter
The following examples demonstrate the usage of the AOEXEC ALERT PUBLISH parameter.

Example 1. This example creates an ALERT and publishes it to all connected PATROL EM workstations, deleting
any ALERTSs already present with the same queue name and key.

"AOEXEC ALERT KEY(TESTKEY) TEXT(“THIS IS A TEST”) FUNCTION(ADD) PUBLISH(REPLACE)" ,
"QUEUE(TEST AREA) SSID(RE61)"

Example 2: This example creates an ALERT but does not publish it to any connected MAINVIEW
AutoOPERATOR Elan Workstation.

"AOEXEC ALERT KEY(TESTKEY) TEXT(“DO NOT PUBLISH ME”) FUNCTION(ADD) PUBLISH(NO)" ,
"QUEUE(MAIN) SSID(RE61)"

160 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

AOEXEC MSG

AOEXEC MSG

This command logs a message in the BBI-SS PAS Journal log.

Command

Parameters

AOEXEC MSG

‘Message text’
SS | SSID(subsystem identifier)
[TGTSS(target subsystem identifier)]

The following table describes the parameters.

Parameter

Function Notes

Message text

Text of the message to issue. Maximum length is 252 bytes.

SS | SSID SS | SSID() specifies the subsystem | Required keyword.
identifier of a local subsystem.
TGTSS If the TGTSS() keyword is specified, thie Optional keyword.

subsystem specified by the SS | SSID(
keyword is considered a router and the| It must be in the same sysplex as the BE
actual function is executed on the SS specified with the SSID() keyword,
subsystem specified by TGTSS(). If and both systems must have the same
TGTSS() is not specified, the requested XCFGROUP specified in the BBPARM
function is executed on the subsystem | BBISSPxx.

specified by the SS | SSID keyword.

=S
]

Note: Specifying a null variable for Message text causes an error.

Return codes are listed in the following table.

Value Description

-1 When the TGTSS() keyword is used, specifies that either the request timed out or thetarget
system was shut down in the middle of a request.

0 Command was executed successfully.

8 Supplied message text exceeds limit of 252 characters.

16 Invalid syntax used.

32 No XCF connection exists between the subsystem specified with the SS | SSID() keyword
and the subsystem specified using the TGTSS() keyword. The target subsystem is most
likely not active or not in the same sysplex as the originating subsystem.

36 The subsystem specified using the SS | SSID() keyword cannot be found on the local
system.

40 Security definitions disallowed access to this function on the specified subsystem.

48 Incompatible versions of AOAnywhere exist.

52 An attempt was made to execute this function under NetView without a valid
Access/NetView product key.

Chapter 9. Performing Automation Using AOAnywher61

AOEXEC MSG

Example

This example sends a message to the BBI-SS PAS monitoring the target named CICA. The message is logged on the
remote Journal and no entry is made on the originating system's Journal.

“AOEXEC MSG "MANUFACTURING DATABASE 1S OFFLINE®" SSID(RE61) TGTSS(CICA)”

162 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

AOEXEC NOTIFY

AOEXEC NOTIFY

This command sends a request through AutoOPERATOR to issue a pager call using the MAINVIEW
AutoOPERATOR Elan workstation component (if it is installed).

Command

Parameters

AOEXEC NOTIFY

NAME(Elan contact name)
[INFO(‘'Text)]

SS | SSID(subsystem identifier)
[TGTSS(target subsystem identifier)]

The following table describes the parameters.

subsystem specified by the SS | SSID(
keyword is considered a router and the

actual function is executed on the
subsystem specified by TGTSS(). If

function is executed on the subsystem
specified by the SS | SSID keyword.

TGTSS() is not specified, the requested

Parameter Function Notes
NAME The contact name defined to MAINVIEW 1-32 characters alphanumeric.
AutoOPERATOR Elan workstation. MAINVIEW AutoOPERATOR Elan
workstation equates this name to a
telephone number to be dialed.
INFO Any information to be passed and placedl-12 alphanumeric characters.
on the pager.
Text must be included in quotation mark
if it contains blanks.
SS | SSID SS | SSID() specifies the subsystem | Required keyword.
identifier of a local subsystem.
TGTSS If the TGTSS() keyword is specified, the Optional keyword.

It must be in the same sysplex as the BE
SS specified with the SSID() keyword,
and both systems must have the same
XCFGROUP specified in the BBPARM
BBISSPxx.

B

Return codes are listed in the following table

target

Value Description

-1 When the TGTSS() keyword is used, specifies that either the request timed out or the
system was shut down in the middle of a request.

0 MAINVIEW AutoOPERATOR Elan workstation successfully passed the information.

8 The request timed out.

12 MAINVIEW AutoOPERATOR Elan workstation could not execute the request.

16 MAINVIEW AutoOPERATOR Elan workstation communications were not establishe

.

Chapter 9. Performing Automation Using AOAnywher63

AOEXEC NOTIFY

Value Description

32 No XCF connection exists between the subsystem specified with the SS | SSID() keyword
and the subsystem specified using the TGTSS() keyword. The target subsystem is most
likely not active or not in the same sysplex as originating subsystem.

36 The subsystem specified using the SS | SSID() keyword cannot be found on the local
system.

40 Security definitions disallowed access to this function on the specified subsystem.

48 Incompatible versions of AOAnywhere exist.

52 An attempt was made to execute this function under NetView without a valid

Access/NetView product key.

Example

This command natifies the individual SYSPROG through MAINVIEW AutoOPERATOR Elan Workstation, passing
the information SYSTEM to the pager.

"AOEXEC NOTIFY NAME(SYSPROG) INFO(SYSTEM) SSID(RE61)"

164 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

AOEXEC SELECT

AOEXEC SELECT

This command invokes an EXEC or a program. This section also describes how to invoke programs written in other
programming languages.

Command Parameters

AOEXEC SELECT EXEC(‘execname parml...parm2...p@&ym
[PRI(NORMAL|HIGH)]

[WAIT(NO|YES)]

SS | SSID(subsystem identifier)
[TGTSS(target susbsystem identifier)]
[VAR(varl....var2....var3...vaj]

The following table describes the parameters.

Parameter Function Notes

EXEC(‘execname and | Name of EXEC to invoke. If there are | Maximum length is 255 characters.

any parms’) parameters, the EXEC name and the | Required parameter.
parameters must be enclosed in quotatipn
marks.

If only the EXEC name is specified, do
not use quotation marks.

PRI Execution priority of the EXEC to be Either NORMAL or HIGH. Applies only
invoked to EXEC keyword. It overrides
AAOEXPOO0 parameters. PRI is valid
with WAIT(YES) and WAIT(NO).

WAIT Suspension criterion for invoking EXEC Either YES or NO.

WAIT(YES) causes the AOEXEC
command to be suspended until the
invoked EXEC in the BBI-SS PAS has
completed. WAIT(NO) is returned as
soon as a determination has been mad
whether the EXEC to be invoked actually
exists.

D

When VAR() is specified WAIT(YES)
will be forced.

SS | SSID SS | SSID() specifies the subsystem | Required keyword.
identifier of a local subsystem.

Chapter 9. Performing Automation Using AOAnywher65

AOEXEC SELECT

Parameter Function Notes

TGTSS If the TGTSS() keyword is specified, thie Optional keyword.
subsystem specified by the SS | SSID(
keyword is considered a router and the| It must be in the same sysplex as the BB
actual function is executed on the SS specified with the SSID() keyword,
subsystem specified by TGTSS(). If and both systems must have the same
TGTSS() is not specified, the requested XCFGROUP specified in the BBPARM
function is executed on the subsystem | BBISSPxx.
specified by the SS | SSID keyword.

VAR Specifies the names of any number of | Before the target EXEC begins, the

LOCAL variable pool of the selected variables of the same name into the
EXEC. LOCAL pool.

When the EXEC ends, the contents of
these variables in the target EXEC'’s
LOCAL pool are extracted again and
placed as TSO variables of the EXEC @
the invoking EXEC.

variables that will be exchanged with the contents of these variables are placed as

Return codes are listed in the following table and are set to the value specified in the IMFEXEC EXIT statement of

the calling EXEC.

Value Description

-1 When the TGTSS() keyword is used, specifies that either the request timed out or the|target
system was shut down in the middle of a request.

0 Command was executed successfully.

8 EXEC specified but is not found in BBPROC.

16 Invalid syntax used.

32 No XCF connection exists between the subsystem specified with the SS | SSID() keyword
and the subsystem specified using the TGTSS() keyword. The target subsystem is most
likely not active or not in the same sysplex as originating subsystem.

36 The subsystem specified using the SS | SSID() keyword cannot be found on the local
system.

40 Security definitions disallowed access to this function on the specified subsystem.

48 Incompatible versions of AOAnywhere exist.

52 An attempt was made to execute this function under NetView without a valid
Access/NetView product key.

Example

This example command invokes the EXEC CHKENQ on the remote SS SYSB, passing the parameter

SYS2.PROD.XLIB.

"AOEXEC SELECT EXEC(“CHKENQ SYS2.PROD.XLIB*) SSID(RE61) TGTSS(SYSB)'

166 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

AOEXEC SYSINFO

AOEXEC SYSINFO

This command searches the current MVS image for an AutoOPERATOR subsystem that runs AOAnywhere support.
It returns information in variables regarding the success and failure of this search, as well as the XCF group name in
which the targeted (or defaulted to) subsystem resides. Additionally, it returns the identifiers of all AutoOPERATOR
subsystems that are connected to each other (in the sysplex) and it identifies those subsystems that have been
designated as Alert Receivers.

This information can be used in subsequent requests against AOAnywhere, which require the presence of a SSID
identifier.

The minimum required version level for an AutoOPERATOR subsystem to support AOAnywhere is 6.1.

This command has the following parameters.

Command Parameters

AOEXEC SYSINFO | [SS | SSID()]
[GROUP()]

Chapter 9. Performing Automation Using AOAnywher&67

AOEXEC SYSINFO

The following table describes the parameters.

Parameter

Function

Notes

SS|SSID

SS | SSID() specifies the subsystem
identifier from which system informatior
is obtained. One to four alphanumeric
characters. Optional.

This parameter should be used only whg
separate XCF groups will be used withi
a sysplex. An XCF group for a specific
subsystem is specified on the
XCFGROUP= parameter in BBPARM

is specified, only information for the
subsystems connected to the same XC
group as the targeted subsystem is
obtained. This parameter should not be|
used in conjunction with the GROUP()
parameter.

When neither SSID() nor GROUP() is
specified, GROUP(BMCAB) is the
default. The first subsystem on the curre
0S/390 image belonging to this group
will be referenced to obtain information
about all other AutoOPERATOR
subsystems connected to each other
through this XCF group.

member BBISSP00. When this parameter

=

F

GROUP

GROUP() specifies the XCF group fron
which information is obtained. One to
eight alphanumeric characters in
accordance with IBM XCF group name
Optional.

n This parameter should be used only whg
separate XCF groups will be used withi
a sysplex. An XCF group for a specific
5.subsystem is specified on the
XCFGROUP= parameter in BBPARM

is specified, only information for the
subsystems connected to the same XC
group as the targeted subsystem is
obtained.

At least one AutoOPERATOR subsyste
that belongs to the specified XCF group
should reside on the current OS/390

image. Otherwise this request will fail.

XCFGROUP() or XCF() are valid aliase
of this command.

When neither SSID() nor GROUP() is
specified, GROUP(BMCAB) is the
default. The first subsystem on the curre
0S/390 image belonging to this group
will be referenced to obtain information
about all other AutoOPERATOR
subsystems connected to each other

member BBISSP00. When this parameter

=

F

3

1)

through this XCF group.

168 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

AOEXEC SYSINFO

The following table describes the variables that AOEXEC SYSINFO returns.

Variable Name

Description

SYSTEM

ALRT1 through ALRTx A value of YES or NO. YES means this subsystem has been designated as a

ALERT receiver by specifying ALRTRCVE=YES in BBPARM member BBISSPQ
Otherwise the returned value is NO.

SSID1 through SSIDx An AutoOPERATOR subsystem (SSID) name that is supporting AOAnywherée

where x is between 1 and the value contained in LCNT variable.

1 and the value contained in LCNT .

The SSID, SYSN and ALRT variables are returned in triplets. For example, SSID1, SYSN1 and ALRT1 af
returned together; SSID2, SYSN2 and ALRT2 are returned together, and so on.

Return codes are listed in the following table.

o -

The name of the current OS/390 image (commonly referred to as the system pname)

the

IMFXCFGP The name of the default or target XCF group referred to by the command. If the
SSID() parameter is specified, it contains the name of the XCF group of which
targeted subsystem is a member. If GROUP() was specified, the name is identical to
the contents of this keyword.

LCNT The number of lines returned.

SYSN1 through SYSNXx The names of the MVS images that the relative SSID is active on where x is between

Value Description
44 Processing was terminated in the middle of processing an AOEXEC SYSINFO.
If more than one AutoOPERATOR PAS capable of processing a AOEXnEC SYSINFD
command is active on the local system, it is possible that this situation is temporary and a
subsequent execution of SYSINFO will be successful.
52 An attempt was made to execute this function under NetView without a valid
Access/NetView product key.

Chapter 9. Performing Automation Using AOAnywher69

AOEXEC SYSINFO

Example

/* REXX */
"AOEXEC SYSINFO™
if rc<> 0 then do
say "No active subsystems found®
exit
end
do i=1 to Icnt
if value("SYSN"i)=system then do
myss=value("SSID"i)
mysys=value("SYSN"1)
leave
end
end
"AOEXEC VGET VAR(QJNLSTA) SSID('myss™)"
say "Current journaling status on "strip(mysys)” is "qjnlsta

170 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

AOEXEC VDEL

AOEXEC VDEL

This command deletes one or more variables from one of the AutoOPERATOR variable pools.

Command Parameters
AOEXEC VDEL [POOLSHARED|PROFILE)]

SS | SSID(subsystem identifier)
[TGTSS(target susbsystem identifier)]
[VAR(varl....var2....var3...vaj]

The following table describes the parameters.

specified, the subsystem
specified by the SS | SSID()
keyword is considered a router
and the actual function is
executed on the subsystem
specified by TGTSS(). If
TGTSS() is not specified, the
requested function is executed
on the subsystem specified by
the SS | SSID keyword.

Parameter Function Notes
POOL The pool in which the desighatedOne of the following pools:
variables reside e SHARED
 PROFILE
SHARED is the default.
SS | SSID SS | SSID() specifies the Required keyword.
subsystem identifier of a local
subsystem.
TGTSS If the TGTSS() keyword is Optional keyword.

It must be in the same sysplex as the BBI
SS specified with the SSID() keyword, an
both systems must have the same
XCFGROUP specified in the BBPARM
BBISSPxx.

o8

Chapter 9. Performing Automation Using AOAnywherg 71

AOEXEC VDEL

Parameter

Function

Notes

VAR

The name of one or more
variables

The maximum length of this parameter is
252 bytes. All variables in a pool can be
deleted by using the identifier ALL insteag
of naming all variables individually. A
variable cannot begin with a numeric nor
can it contain special characters.

An example of using a pattern is

AOEXEC VDEL VAR(CICS*) SSID(RE61)

The variable names can be generically
expressed by using an asterisk. However

)

the VDEL command statement assumes the

presence of an asterisk means the end of the
string.
AOEXEC VDEL VAR(ABC*D) SSID(RE61)
is treated as if you coded
AOEXEC VDEL VAR(ABC*) SSID(RE61)
In addition, if you try to use an asterisk
within a string of text, you will receive a
return code for invalid syntax usage. For
example, if you try to issue a pattern
AOEXEC VDEL VAR(CSM*MSG12)
SSID(RE61)
you will receive a return code of
IMFCC=16 (for invalid syntax usage).
Variables beginning with the character Q
are reserved for system variables and canpot
be modified.
Note: This command does not affect variables that have already been retrieved from one of the pools.
Return codes are listed in the following table.
Value Description
-1 When the TGTSS() keyword is used, specifies that either the request timed out or the
target system was shut down in the middle of a request.

0 Command was executed successfully.

8 Variable does not exist.

16 Invalid syntax used.

20 Severe error (internal) and pool was not found.

172 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

AOEXEC VDEL

24 Variable name not specified.

32 No XCF connection exists between the subsystem specified with the SS | SSID()
keyword and the subsystem specified using the TGTSS() keyword. The target subgystem
is most likely not active or not in the same sysplex as originating subsystem.

36 The subsystem specified using the SS | SSID() keyword cannot be found on the Iqcal
system.

40 Security definitions disallowed access to this function on the specified subsystem.

48 Incompatible versions of AOAnywhere exist.

52 An attempt was made to execute this function under NetView without a valid

Access/NetView product key.

Example

This example deletes all variables ending in the characters TEST from the shared variable pool. It uses the VLST
command to retrieve all variable names.

"AOEXEC VLST VAR(*) POOL(SHARED) SSID(RE61)"
do i=1 to lcnt

if length(value("line".i))< 4 then iterate

if right(value(value(line.i)), 4)="TEST” then

"AOEXEC VDEL VAR('value(line.i)") POOL(SHARED) SSID(RE61)"
end

Chapter 9. Performing Automation Using AOAnywherg73

AOEXEC VGET

AOEXEC VGET

This command copies one or more variables from one of the AutoOPERATOR pools into the EXECs function pool.

Command Parameters
AOEXEC VGET [POOLEHAREDI|PROFILE)]

SS | SSID(subsystem identifier)
[TGTSS(target susbsystem identifier)]
VAR(varl....var2....var3...vay

The following table describes the parameters.

Parameter Function Notes
POOL The pool in which the designated One of the following pools:
variables reside e SHARED
e PROFILE
SHARED is the default.
SS | SSID SS | SSID() specifies the subsystem | Required keyword.
identifier of a local subsystem.
TGTSS If the TGTSS() keyword is specified, thie Optional keyword.
subsystem specified by the SS | SSID(
keyword is considered a router and the| It must be in the same sysplex as the BE
actual function is executed on the SS specified with the SSID() keyword,
subsystem specified by TGTSS(). If and both systems must have the same
TGTSS() is not specified, the requested XCFGROUP specified in the BBPARM
function is executed on the subsystem | BBISSPxx.
specified by the SS | SSID keyword.
VAR The name of one or more variables Each variable name can be up to 32
characters. The maximum length of the
combined variable values is 252 bytes.

Return codes are listed in the following table.

Value Description

-1 When the TGTSS() keyword is used, specifies that either the request timed out or the
system was shut down in the middle of a request.

0 Command was executed successfully.

8 Variable does not exist.

12 Variable name not specified.

16 Invalid syntax used.

20 Severe error (internal) and pool was not found.

174 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

=S
]

target

AOEXEC VGET

Value Description

32 No XCF connection exists between the subsystem specified with the SS | SSID() keyword
and the subsystem specified using the TGTSS() keyword. The target subsystem is most
likely not active or not in the same sysplex as originating subsystem.

36 The subsystem specified using the SS | SSID() keyword cannot be found on the local
system.

40 Security definitions disallowed access to this function on the specified subsystem.

48 Incompatible versions of AOAnywhere exist.

52 An attempt was made to execute this function under NetView without a valid
Access/NetView product key.

Example

This example displays the contents of the EXECs SHARED variable pool. It uses the VLST command to retrieve the
names of all variables in that pool.

It then uses the VGET command to retrieve them one after the other and displays their contents.

"AOEXEC VLST VAR(*) POOL(SHARED) SSID(RE61)"

do i=1 to

var=value(value(line)i)
"AOEXEC VGET VAR("'var') POOL(SHARED) SSID(RE61)"

say var

end

Chapter 9. Performing Automation Using AOAnywherg75

AOEXEC VLST

AOEXEC VLST

This command lists variable names defined in the AutoOPERATOR pools. It returns those hames in LOCAL
variables LINE1 through LINEn and sets LCNT to the number of LINES.

Command Parameters

AOEXEC VLST [POOLSHARED|PROFILE)]

SS | SSID(subsystem identifier)
[TGTSS(target susbsystem identifier)]
VAR (variable name)

The following table describes the parameters.

Parameter Function Notes
POOL The pool in which the designated One of the following pools:
variables reside
e SHARED
* PROFILE

SHARED is the default.

SS | SSID SS | SSID() specifies the subsystem | Required keyword
identifier of a local SS.

176 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

AOEXEC VLST

TGTSS If the TGTSS() keyword is specified, the Optional keyword.
subsystem specified by the SS | SSID(
keyword is considered a router and the| It must be in the same sysplex as the BBI-
actual function is executed on the SS specified with the SSID() keyword,
subsystem specified by TGTSS(). If and both systems must have the same
TGTSS() is not specified, this is the XCFGROUP specified in the BBPARM
subsystem where the requested function iBBISSPxx.
executed.

VAR The name of one variable Required parameter.

Only one variable can be specified and
the name must be enclosed in
parentheses.

The variable name can be 1-30 charactérs
alphanumeric conforming to TSO coding
conventions.

The variable name can be a pattern
(A+B*)

where the following wildcards are
supported:

+ (plus sign)
Matches any one character.

* (asterisk)
Matches zero to any number of
characters.

Return codes are listed in the following table.

Value Description

-1 When the TGTSS() keyword is used, specifies that either the request timed out or the|target
system was shut down in the middle of a request.

0 Command was executed successfully.

12 Variable pool is not available.

16 Invalid syntax used.

20 Variable name not specified.

32 No XCF connection exists between the subsystem specified with the SS | SSID() keyword
and the subsystem specified using the TGTSS() keyword. The target subsystem is most
likely not active or not in the same sysplex as originating subsystem.

36 The subsystem specified using the SS | SSID() keyword cannot be found on the local
system.

40 Security definitions disallowed access to this function on the specified subsystem.

Chapter 9. Performing Automation Using AOAnywherg77

AOEXEC VLST

48 Incompatible versions of AOAnywhere exist.

52 An attempt was made to execute this function under NetView without a valid
Access/NetView product key.

Example

The following EXEC uses the AOEXEC VLST command to retrieve all the variables that begin with RETRY and
then reports the number of retries. Variables LINE1 through LINExx (where xx is IMFNOL) will contain the number
of found variables.

/* REXX */
"AOEXEC VLST VAR(RETRY*) POOL(SHARED) SSID(RE61)"
if rc = 8 then exit
do i=1 to lcnt
contents=value("LINE"1)
"AOEXEC VGET VAR(''contents') SSID(RE61)"
contents=value(contents)
count=left(contents,6)
nod=substr(contents,7)
say "Terminal : "nod" Retries: "count
END

178 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

AOEXEC VPUT

AOEXEC VPUT

This command copies one or more variables from the EXECs function pool into one of the AutoOPERATOR pools.

Command Parameters

AOEXEC VPUT [POOLSHARED|PROFILE)]

SS | SSID(subsystem identifier)
[TGTSS(target subsystem identifier)]
VAR(varl....var2....var3...vay

The following table describes the parameters.

Parameter Function Notes
POOL The pool in which the designated One of the following pools:
variables reside e SHARED
* PROFILE

SHARED is the default.

SS | SSID SS | SSID() specifies the subsystem | Required keyword.
identifier of a local SS.

TGTSS If the TGTSS() keyword is specified, theOptional keyword.
subsystem specified by the SS | SSID()
keyword is considered a router and the It must be in the same sysplex as the
actual function is executed on the BBI-SS specified with the SSID()

subsystem specified by TGTSS(). If keyword, and both systems must have,
TGTSS() is not specified, this is the the same XCFGROUP specified in the
subsystem where the requested functipiBBPARM BBISSPxx.
is executed.

N

VAR The name of one or more variables Each variable name can be up to 3
characters. The maximum length of th
combined variable values is 252 bytes

11%

Variables beginning with the character Q
are reserved for system variables and
should not be modified.

Return codes are listed in the following table.

Value Description

-1 When the TGTSS() keyword is used, specifies that either the request timed out or the|target
system was shut down in the middle of a request.

0 Command was executed successfully.

4 Variable did not previously exist in the designated pool.

12 Q-type variable was specified and cannot be copied with VPUT.

16 Invalid syntax used.

Chapter 9. Performing Automation Using AOAnywher&79

AOEXEC VPUT

Value Description

20 Variable name is invalid.

24 Variable name was not specified.

32 No XCF connection exists between the subsystem specified with the SS | SSID() keyword
and the subsystem specified using the TGTSS() keyword. The target subsystem is most
likely not active or not in the same sysplex as originating subsystem.

36 The subsystem specified using the SS | SSID() keyword cannot be found on the local
system.

40 Security definitions disallowed access to this function on the specified subsystem.

48 Incompatible versions of AOAnywhere exist.

52 An attempt was made to execute this function under NetView without a valid
Access/NetView product key.

Examples

This section contains examples using the AOEXEC VPUT command statement. A brief discussion follows each

example.

Example 1.

"AOEXEC VPUT VAR(ABENDS ABENDCOUNT ABENDREASON) POOL(SHARED) SSID(RE61)™

This example command saves the current valusBfDS, ABENDCOUNT, andABENDREASON in the SHARED pool.

Example 2.

"AOEXEC VPUT VAR(ABENDS) POOL(PROFILE) SSID(RE61)"

This example command saves the current valu8efDS in the PROFILE pool.

180 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

AOEXEC VDELL

AOEXEC VDELL

This command deletes one or more long variables from one of the AutoOPERATOR variable pools.

Note: This variable operation only supports a subset of the functions available for the short variables. It ONLY
affects and searches for long variables. If a short variable (created with VPUT instead of VPUTL) with the
specified name exists, it is ignored.

Command Parameters

AOEXEC VDELL | [POOL(SHAREDI|PROFILE)]
VAR(varl....var2....var3...vay

SS | SSID(subsystem identifier)
[TGTSS(target subsystem identifier)]

The following table describes the parameters.

Parameter Function Notes
POOL The pool in which the designated One of the following pools:
variables reside « SHARED
« PROFILE

SHARED is the default.

VAR The name of one or more variables Required parameter.

Each variable name can be up to 32
characters. Maximum parameter lengt
is 252.

=)

Variables beginning with the character Q
are reserved for system variables and
cannot be modified.

SS | SSID SS | SSID() specifies the subsystem | Required keyword.
identifier of a local SS.

TGTSS If the TGTSS() keyword is specified, thHeOptional keyword.
subsystem specified by the SS | SSID()
keyword is considered a router and the It must be in the same sysplex as the
actual function is executed on the BBI-SS specified with the SSID()

subsystem specified by TGTSS(). If keyword, and both systems must have,
TGTSS() is not specified, this is the the same XCFGROUP specified in the
subsystem where the requested functipiBBPARM BBISSPxx.
is executed.

Note: This command does not affect variables that have already been retrieved from one of the pools.

Return codes are listed in the following table.

Value Description

-1 When the TGTSS() keyword is used, specifies that either the request timed out or the
target system was shut down in the middle of a request.

Chapter 9. Performing Automation Using AOAnywher81

AOEXEC VDELL

0 The variable existed in the target pool and has been deleted.

8 No long variable with this name has been found in the target pool.

12 An attempt to delete a read-only variable (for example, Q-type variable was specifjed
which cannot be deleted with VDELL).

16 Invalid syntax used.

24 Variable name not specified.

32 No XCF connection exists between the subsystem specified with the SS | SSID()
keyword and the subsystem specified using the TGTSS() keyword. The target subgystem
is most likely not active or not in the same sysplex as originating subsystem.

36 The subsystem specified using the SS | SSID() keyword cannot be found on the Iqcal
system.

40 Security definitions disallowed access to this function on the specified subsystem.

48 Incompatible versions of AOAnywhere exist.

52 An attempt was made to execute this function under NetView without a valid
Access/NetView product key.

Example

The PROFILE pool is searched for a long variable with the name of X. If found, it is deleted.

"AOEXEC VDELL VAR(X) POOL(PROFILE) SSID(RE61)"

182 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

AOEXEC VGETL

AOEXEC VGETL

This command copies one or more long variables from one of the AutoOPERATOR pools into the TSO pool.

Note: This variable operation supports only a subset of the functions available for the short variables. It ONLY
affects and searches for long variables. If a short variable (created with VPUT instead of VPUTL) with the
specified name exists, it is ignored.

Command Parameters
AOEXEC VGETL | [POOLSHAREDI|PROFILE)]

VAR(varl....var2....var3...vaJ
SS | SSID(subsystem identifier)
[TGTSS(target subsystem identifier)]

The following table describes the parameters.

Parameter Function Notes
POOL The pool in which the designated One of the following pools:
variables reside e SHARED
« PROFILE
SHARED is the default.
VAR The name of one or more variables Required parameter.
Each variable name can be up to 30
characters.
SS | SSID SS | SSID() specifies the subsystem | Required keyword.
identifier of a local SS.
TGTSS If the TGTSS() keyword is specified, the Optional keyword.

subsystem specified by the SS | SSID()
keyword is considered a router and the
actual function is executed on the
subsystem specified by TGTSS(). If
TGTSS() is not specified, this is the
subsystem where the requested functior
executed.

It must be in the same sysplex as the B
SS specified with the SSID() keyword,
and both systems must have the same
XCFGROUP specified in the BBPARM
iBBISSPxx.

3

Return codes are listed in the following table.

Value Description

-1 When the TGTSS() keyword is used, specifies that either the request timed out or the
system was shut down in the middle of a request.

0 The variable existed in the target pool and has been retrieved.

12 Variable name not specified.

16 Invalid syntax used.

Chapter 9. Performing Automation Using AOAnywher83

target

AOEXEC VGETL

Value Description

32 No XCF connection exists between the subsystem specified with the SS | SSID() keyword
and the subsystem specified using the TGTSS() keyword. The target subsystem is most
likely not active or not in the same sysplex as originating subsystem.

36 The subsystem specified using the SS | SSID() keyword cannot be found on the local
system.

40 Security definitions disallowed access to this function on the specified subsystem.

48 Incompatible versions of AOAnywhere.

52 An attempt was made to execute this function under NetView without a valid

Access/NetView product key.

Examples

The PROFILE pool is searched for a long variable with the name of X. If found, it is placed into the TSO pool and
assigned to the variable Y.

"AOEXEC VGETL VAR(X) POOL(PROFILE) SSID(RE61)'
Y=X

184 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

AOEXEC VLSTL

AOEXEC VLSTL

This command retrieves a long variable from the specified pool and places it into the TSO pool.

Note: This variable operation supports only a subset of the functions available for the short variables. It ONLY
affects and searches for long variables. If a short variable (created with VPUT instead of VPUTL) with the
specified name exists, it is ignored.

Command Parameters
AOEXEC VLSTL | [POOLSHARED|PROFILE)]
VAR(var)

SS | SSID(subsystem identifier)
[TGTSS(target subsystem identifier)]

The following table describes the parameters.

Parameter Function Notes
POOL The pool in which the designated One of the following pools:
variables reside
e SHARED
* PROFILE

SHARED is the default.

VAR The name of one variable Required parameter.

Only one variable can specified and the
name must be enclosed in parentheses.

Each variable name can be up to 30
characters.

The variable name can be a pattern
(A+B*)

where the following wildcards are
supported:

+ (plus sign)
Matches any one character.

* (asterisk)
Matches zero to any number of
characters.

Chapter 9. Performing Automation Using AOAnywher85

AOEXEC VLSTL

SS | SSID SS | SSID() specifies the subsystem | Required keyword.
identifier of a local SS.
TGTSS If the TGTSS() keyword is specified, thie Optional keyword.

subsystem specified by the SS | SSID(
keyword is considered a router and the
actual function is executed on the
subsystem specified by TGTSS(). If
TGTSS() is not specified, this is the

It must be in the same sysplex as the BE
SS specified with the SSID() keyword,
and both systems must have the same
XCFGROUP specified in the BBPARM

B

subsystem where the requested function iBBISSPxx.
executed.

Return codes are listed in the following table..

Value Description

-1 When the TGTSS() keyword is used, specifies that either the request timed out or the|target
system was shut down in the middle of a request.

0 At least one variable has been found.

16 Invalid syntax used.

20 Variable name not specified.

32 No XCF connection exists between the subsystem specified with the SS | SSID() keyword
and the subsystem specified using the TGTSS() keyword. The target subsystem is most
likely not active or not in the same sysplex as originating subsystem.

36 The subsystem specified using the SS | SSID() keyword cannot be found on the local
system.

40 Security definitions disallowed access to this function on the specified subsystem.

48 Incompatible versions of AOAnywhere.

52 An attempt was made to execute this function under NetView without a valid
Access/NetView product key.

Example

This EXEC lists all long variables in the SHARED pool and writes their names to the terminal.

/* REXX */
"AOEXEC VLSTL VAR(*) POOL(SHARED) SSID(RE61)"
say lIcnt
do i=1 to lcnt
name = value("line"i)
say name
end

186 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

AOEXEC VPUTL

AOEXEC VPUTL

This command creates a or sets a long variable from a variable in the TSO pool.

Note: This variable operation supports only a subset of the functions available for the short variables. For example,
no target system functionality is provided. It ONLY affects and searches for long variables. If a short
variable (created with VPUT instead of VPUTL) with the specified name exists, it is ignored.

Command Parameters

AOEXEC VPUTL | [POOLSHAREDI|PROFILE)]
VAR(varl....var2....var3...vaJ

SS | SSID(subsystem identifier)
[TGTSS(target subsystem identifier)]

The following table describes the parameters.

Parameter Function Notes
POOL The pool in which the designated One of the following pools:
variables reside e SHARED
 PROFILE

SHARED is the default.

VAR The name of one or more variables Required parameter.

Each variable name can be up to 30
characters.

Variables beginning with the character Q
are reserved for system variables and
cannot be modified.

SS | SSID SS | SSID() specifies the subsystem | Required keyword.
identifier of a local SS.

TGTSS If the TGTSS() keyword is specified, tHeOptional keyword.
subsystem specified by the SS | SSID()
keyword is considered a router and the It must be in the same sysplex as the
actual function is executed on the BBI-SS specified with the SSID()

subsystem specified by TGTSS(). If keyword, and both systems must have,
TGTSS() is not specified, this is the the same XCFGROUP specified in the
subsystem where the requested functip8BPARM BBISSPxx.
is executed.

Chapter 9. Performing Automation Using AOAnywher&87

AOEXEC VPUTL

Return codes are listed in the following table.

Value Description

-1 When the TGTSS() keyword is used, specifies that either the request timed out or the|target
system was shut down in the middle of a request.

0 The variable existed in the target pool and has been overwritten.

4 The variable did not exist in the pool and has been created.

8 An error occurred during operation. Possible out-of-space condition for the PROFILE pool.

12 An attempt was made to set a read-only variable (for example, Q-type variable was
specified which cannot be set with VPUT).

16 Invalid syntax used.

20 Variable pool not found. BIVARS not allocated.

24 Variable name not specified.

32 No XCF connection exists between the subsystem specified with the SS | SSID() keyword

and the subsystem specified using the TGTSS() keyword.cannot be found The target
subsystem is most likely not active or not in the same sysplex as originating subsystem.

36 The subsystem specified using the SS | SSID() keyword cannot be found on the local
system.

40 Security definitions disallowed access to this function on the specified subsystem.

48 Incompatible versions of AOAnywhere.

52 An attempt was made to execute this function under NetView without a valid

Access/NetView product key.

Examples

This example saves the variable A to the SHARED pool. Note that the variable can be shorter than 255 characters.

A="This is a test”
"AOEXEC VPUTL VAR(A) POOL(SHARED) SSID(RE61)"

188 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Chapter 10. Accessing Array Data with AutoOPERATOR
EXECs

This chapter describes how to use IMFEXEC ARRAY commands to access data collected in arrays.

Overview

This document outlines IMFEXEC ARRAY|ARY commands that enable you to access data from two-dimensional
variable arrays. Arrays bear some resemblance to ISPF tables in the way they can be scanned, sorted, positioned and
are backed by disk space.

When Are Arrays Useful

An EXEC often has to deal with many instances of the same data type for example: a number of unit addresses,
TSO/E user names, job names, and so on. Often these data types are part of a record type. In addition to a job name, a
job also has a jobstep name, a start time, elapsed CPU time, EXCPs and any amount of additional information.

These data fields can be manipulated using REXX stem variables but only for a single column or field in a record.
TSO/E CLIST EXECs cannot handle this type of data at all. When dealing with multiple fields, you might use several
REXX stem variables with the same index but many inefficient operations can result when swapping records or
assigning them to a third record. Instead of referring to a single record, REXX stem variables force you to deal with
fields only, never considering them as related items.

Furthermore, scanning these records for particular contents or sorting and creating specific subsets of information
becomes cumbersome and resource intensive.

This is where arrays come in: arrays represent data in row-column format where data items are kept together in rows
or records. Instead of manipulating this data manually, certain operations may be performed against an array as an
entirety, such as sorting it based upon the contents of a column.

To process an array you create a reference to a specific row (also called a record) and retrieve the entire row into
REXX variables. This operation potentially sets a great number of variables all at once. A row is always treated as
one unit and the individual fields will never lose synchronization (which might occur when using individual REXX
stem variables).

Other advantages to arrays include
« Rows can be filtered so that only those rows whose columns meet certain criteria are visible
* Rows can be sorted with one command

« Arrays can be shared among multiple EXECs and saved to permanent storage (DASD)

As a debugging aid, a sample Exec (DUMPARY) that writes the contents of an Array to the BBI journal is included
in the BBSAMP library. You can invoke this EXEC from a BBI command line by passing to it, the name of the Array
and the number of rows and columns to be displayed, for example:

%DUMPARY ARRAY(array) ROWS(50) COLS(10)

Chapter 10. Accessing Array Data with AutoOPERATOR EXEG89

where array is the name of an array saved on disk, and 50 rows with 10 columns in each row will be displayed.
Additionally, you can invoke DUMPARY from within your own EXEC by specifying one of the following
commands:

IMFEXEC SELECT EXEC(DUMPARY ARRAY(array) ROWS(n) COLS(n) CON(N)) WAIT(YES)
or

call DUMPARY "ARRAY(array) ROWS(n) COLS(n) CON(N)’

where array is the name of an array currently accessed by your EXEC. ARRAY is the only required parameter. All
parameters can be abbreviated for convenience. The parameter CON(N) is used when your EXEC already has a
connection to the array. For more information about abbreviations and examples of how to invoke the DUMPARY
EXEC, invoke it from the BBI journal command line, passing to it, theltekti. Then read the output in the BBI
journal. For example, specify:

%DUMPARY HELP

Note: If you do not specify a value fAROWS () or COLS(), the entire array will be written to the journal. Be sure
that either the BBSAMP library is in your SYSPROC concatenation or copy the DUMPARY EXEC from
BBSAMP to another library concatenated to SYSPROC.

190 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

IMFEXEC ARRAY Commands

The following table lists the IMFEXEC ARRAY commands you can use to access information in arrays and the page
where you can find more information.

Command Page Function

CONNECT 193 Establishes a logical connection between one or more EXECs and an arfay.
CREATE 195 Defines a new array by providing definitions of its logical characteristics.
DELETE 197 Deletes a row from an array.

DISC 198 Terminates a logical connection between one or more EXECs and an array.
FIND 200 Locates a particular row conforming to a set of criteria.

GET 202 Transfers the current array row into local variables.

INFO 203 Provides information about an array.

INSERT 205 Inserts a new row into an array.

LIST 206 Provides information about saved or disconnected arrays (when kept).

PUT 207 Sets the current array row from local variables.

SAVE 208 Checkpoints the contents of an array to disk.

SET 209 Transfers an array into REXX TSO/E variables.

SETVIEW 210 Limits array access to rows matching certain criteria.

SORT 212 Sorts an array according to one or more criteria.

Chapter 10. Accessing Array Data with AutoOPERATOR EXEG91

General Coding Conventions

The following sections briefly describe the coding conventions for using the IMFEXEC ARRAY | ARY command
statements.

Note: Every command described in this chapter is prefixed by the literal ARRAY | ARY to avoid naming conflicts
with existing IMFEXEC constructs. ARY is a valid abbreviation.

For example:

IMFEXEC ARRAY|ARY command [parameters]

Using Variable Names

Variable names are limited to 31 characters in length. The first character of the variable must be alphanumeric or one
of the following special characters:

e 3
s @
. #

Reading Condition Codes

Every command returns a condition code in the variable IMFCC in the TSO/E pool. Refer to Chapter 4, “Using
Variables in REXX EXECs” on page 49 for more information about pools.

Each IMFEXEC command statement description includes a table describing the parameters for the command. The
table uses the following format:

Parameter Function Notes

1 2 3

The numbers in this table correspond to the following descriptions:

1 A short parameter identifier. If the parameter has uppercase letters, this identifier must be coded exactly as
shown.

If parts of the identifier are shownliold, this parameter can be abbreviated, using the bold letters.

Positional parameters are not associated with a specific identifier. In these cases, this column contains an alias
that describes the parameter.

2 The function of the parameter.

3 Notes about the parameter. Typically, these notes describe any length, value, range, or string limitations.

192 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

ARRAY CONNECT

ARRAY CONNECT

This command establishes a logical connection between one or more EXECs and an array.

Command Parameters

ARRAY|ARY CONNECT NAME
[ACCESSUPDATE|READ)]
[TOKEN()]
[MSG|NOMSG]

The following table describes the parameters.

er,

Parameter Function Notes

NAME The name of the array as established | 1-31 characters alphanumeric

during array creation
This parameter is required.

ACCESS Array access definition UPDATE is the default value.
Multiple read accesses by separate
threads to an array are possible. Howev,
UPDATE requires exclusive access.

TOKEN Array token returned by DISC KEEP When not specified, the array is retri

from DASD. When specified, only
disconnected arrays are eligible.

pved

Message option

Controls the writing of exception
messages to the journal

One of the following values:

MSG
Exception messages are written
the journal.

NOMSG
No exception messages are
written to the journal (default).

When retrieving an array from disc, the current position is at the very beginning of the array. Neither a View nor a
Sort specification will exist. When reconnecting to a kept array position, Sort and View criteria will be exactly as left

off.

Condition codes are listed in the following table.

Value Description

0 Command was executed successfully.

8 Array not found or error reading from disc / cannot create temp copy.
16 Syntax error.

Chapter 10. Accessing Array Data with AutoOPERATOR EXEG93

ARRAY CONNECT

Example

The EXEC attempts to establish a connection to the array named DASDSTATS that it assumes has been
disconnected. If this attempt fails, a disc copy is loaded.

"IMFEXEC ARRAY CONNECT DASDSTATS TOKEN('‘'arytoken™)™
if imfcc <> 0 then "IMFEXEC ARRAY CONNECT DASDSTATS READ"

Note: After invoking the ARRAY CONNECT command, you can call the debugging EXEC, DUMPARY, that
was first described in the section entitled “When Are Arrays Useful” on page 189. By adding one of the
following statements following the ARRAY CONNECT command,

IMFEXEC SELECT EXEC(DUMPARY ARRAY(array) ROWS(n) COLS(n) CON(N)) WAIT(YES)
or

CALL DUMPARY "ARRAY(array) ROWS(n) COLS(n) CON(N)"

where array is the name of the array returned by ARRAY CONNECT to your EXEC, you can write the
contents of the array to the BBI journal.

Note that if you do not specify a value for ROWS() or COLS(), the entire array will be written to the journal.

194 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

ARRAY CREATE

ARRAY CREATE

This command defines a new array to AutoOPERATOR.

Command Parameters
ARRAY|ARY CREATE NAME
STEM(stem name)
INITIAL()
[INCOQI

The following table describes the parameters.

Parameter Function Notes
NAME The name of the new array to define 1-31 characters alphanumeric
STEM Variable root name of a set of variables| The format is identical to the format
containing the array definition above. Under REXX, true stem variable
will be referenced whereas under TSO/
a numeric is appended to the name.
The low index is assumed to be 1. The
definition continues until either a null or
undefined variable is encountered.
INITIAL Initial size in rows of the array 1-32767 numeric
INC Increment to be used when extending thel.-32767 numeric
array

mwn

After successful execution of the command the array will be in UPDATE access. It is possible to redefine arrays that
currently exist and to overwrite them when saving. The format of the array definition in the indicated variables is as

follows:

Column name (1-255 chars, TSO/E conforming)
Column width (1-32767, numeric)

Format (must be C currently)

Individual fields are separated by one or more spaces.

Condition codes are listed in the following table.

User data pertaining to this field (1-32767 chars, no restrictions, optional)

Value Description

0 Command was executed successfully.
8 Invalid or incomplete array definition.
16 Syntax error.

Chapter 10. Accessing Array Data with AutoOPERATOR EXEG95

ARRAY CREATE

Example

This EXEC defines a new array with 3 columns unit: VOL and STAT. It does so by defining 3 variables with the
contents of the definition. Although not absolutely necessary in this example, be sure the succeeding variable is set to
null and the definition processor invoked.

The array definition is then saved.

array.1="UNIT 3 C*

array.2="VOL 6 C*

array.3="STAT 8 C*

array.4=""

"IMFEXEC ARRAY CREATE DASDSTATS STEM(ARRAY) INITIAL(500) INC(50)"
"IMFEXEC ARRAY DISC DASDSTATS SAVE"

196 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

ARRAY DELETE

ARRAY DELETE

This command deletes the current row from the array.

Command Parameters

ARRAY|ARY DELETE NAME

The following table describes the parameters.

Parameter Function Notes

NAME The name of the array as established | 1-to 31-characters alphanumeric.
during array creation

Condition codes are listed in the following table.

Value Description
0 Command was executed successfully
4 Array is empty
8 Array is not found
12 Array is not in UPDATE access
16 Syntax error
Example

This EXEC deletes all rows in an array beginning with those rows where variable VOL is greater than or equal to the
string BAB.

"IMFEXEC ARRAY CONNECT DASDSTATS"
"IMFEXEC ARRAY FIND DASDSTATS CRITERIA(*VOL,,,>=, ”?’BAB”””) ROW(1)"
do while imfcc=0

"IMFEXEC ARRAY DELETE DASDSTATS™"

"IMFEXEC ARRAY FIND DASDSTATS CRITERIA(’VOL,,,>=, ”?BAB”””) ROW(1)"
end

Chapter 10. Accessing Array Data with AutoOPERATOR EXEGO7

DISC

ARRAY DISC

This command terminates a logical connection with an array.

Command Parameters

ARRAY|ARY DISC NAME
[ACTION(SAVE|NOSA/E|DELETE|KEEP)]

The following table describes the parameters.

Parameter Function Notes
NAME The name of the array as established | 1-to 31-characters alphanumeric.
during array creation
ACTION Action to take upon termination One of the following values:
SAVE

Saves all updates since the last
save to disk and saves the cursof
position

NOSAVE
Discards all changes since last
save

DELETE
Discards all changes and removes
array definition

KEEP
Retain array as-is in memory for
future reference. See the
following table for more
information.

The following table describes the TSO/E variables returned from DISC (when KEEP is specified as the ACTION).

TSO/E Variables Returned from DISC

NAME Contents Length/Format Notes
ARYTOKEN Token to be used to 15/Character Properties determined by
reconnect to the array internal design

Condition codes are listed in the following table.

Value Description

0 Command was executed successfully.

8 Failure to save array not found (never connected or created).
16 Syntax error.

198 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

DISC

Example

This EXEC attempts to establish a connection with an array named DASDSTATS. If the array cannot be found it
terminates with a message and a return code of 8. Otherwise it reads the first row from the array and then disconnects

from it with the default action setting of NOSAVE.

"IMFEXEC ARRAY CONNECT DASDSTATS"
if imfcc <> 0 then do
"IMFEXEC MSG ****** EATAL ERRQOR *****>'
"IMFEXEC EXIT CODE(8)"
exit
end
"IMFEXEC ARRAY FIND DASDSTATS ROW(1)™
"IMFEXEC ARRAY GET DASDSTATS"
"IMFEXEC ARRAY DISC DASDSTATS"

Chapter 10. Accessing Array Data with AutoOPERATOR EXEG99

ARRAY FIND

ARRAY FIND

This command positions an array's CURRENT row pointer at the first row meeting specified criteria.

Command Parameters

ARRAY|ARY FIND NAME
[ROW]
[CRITERIA]

The following table describes the parameters

Parameter Function Notes

NAME The name of the array as established | 1-to 31-characters alphanumeric.
during array creation

ROW Starting row for scan The default is the current row

Numeric, the first element of an array ig
indexed by 1.

CRITERIA Criteria to which the row must conform See the comments below the table.

Any number of criteria may be specified, connected by the Boolean operators AND and OR. Entries may be of one of
the following two formats:

e Boolean operator (AND, OR), except for first criterion.

e Column name, 1-255 characters

e Starting position, default is 1

e Length used for comparison, default width of column+1 - starting position

« Comparison operator, one of the following: LT, LE, EQ, GE, GT, NE, <, <=, =,>=,> <> "=

* Boolean operator (AND, OR), except for first criterion

* Column name, 1-255 characters

e Starting position, default is 1

e Length used for comparison, default width of column+1 - starting position

< Comparison operator, one of the following: LT, LE, EQ, GE, GT, NE, <, <=, =, >=, >, <> =

« Literals are enclosed in quotation marks

The following rules also apply:

* When both fields contain numerics (except leading and trailing blanks), a numerical comparison is performed.
Both numbers will always be treated as unsigned integers.

« When a comparison with a literal is requested, a pattern comparison is performed (for example, wildcards such
as * and + may be used).

200 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

ARRAY FIND

« When two columns with different lengths are compared, a comparison with the length of the shorter of the two is
done.

Condition codes are listed in the following table.

Value Description
0 Command was successfully executed.
4 Criteria parsing error.
8 Array not found.
12 Row specification past array extension or 0.
16 Syntax error.
Example

This EXEC connects to the array user ID that contains information about user IDs and accounts associated with them.
It then finds all user IDs belonging to account 3911 and prints them in the BBI-SS log.

"IMFEXEC ARRAY CONNECT USERID™
"IMFEXEC ARRAY FIND USERID CRITERIA(’ACCT,,,=,773911”"7) ROW(D)"
do while imfcc=0
"IMFEXEC ARRAY INFO USERID"
"IMFEXEC ARRAY GET USERID"
"IMFEXEC MSG "‘userid
"IMFEXEC ARRAY FIND USERID CRITERIA(’ACCT,,,=,773911”>") ROW('arypos+1")"
end

Chapter 10. Accessing Array Data with AutoOPERATOR EXE@O1

ARRAY GET

ARRAY GET

This command identifies the view to be used for accessing data.

Command Parameters

ARRAY|ARY GET NAME
[TRIM|NOTRIM]
[SKIP|NOSKIP]

The following table describes the parameters.

Parameter Function Notes

NAME The name of the array as established | 1-to 31-characters alphanumeric.
during array creation

TRIM Defines whether leading and trailing The default is TRIM which means blanks
blanks are removed (trimmed) are removed.

SKIP Advances the current row pointer by 1 | Possible values are SKIP and NOSKIP.

after retrieving the contents of the row | SKIP is the default.

Condition codes are listed in the following table.

Value Description

0 Command was successfully executed.

4 Array is empty / no matching rows for SETVIEW.

8 Array not found.

16 Syntax error.

20 If SKIP was specified (or defaulted to) and the last row of the table was read, a return code
of 20 will be returned.

Example

This EXEC locates the row containing the definition for volume BAB301 in the array named DASDSTATS. It then
retrieves the current status of this volume and writes it to the log.

"IMFEXEC ARRAY CONNECT DASDSTATS"

"IMFEXEC ARRAY FIND DASDSTATS ROW(1) CRITERIA(’VOL,,,=,”?BAB301”"*)"
"IMFEXEC ARRAY GET DASDSTATS"

"IMFEXEC MSG VOL BAB301 Status: ''stat

202 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

ARRAY INFO

ARRAY INFO

This command identifies the view to be used for accessing data.

Command

Parameters

ARRAY|ARY INFO NAME

The following table describes the parameters.

Parameter

Function

Notes

NAME

The name of the array as established | 1-to 31-characters alphanumeric.
during array creation

The following table describes the TSO/E variables returned from INFO.

TSO/E Variables Returned from INFO

NAME Contents Length/Format Example

ARYROWS Number of active rows inf 0-32767 numeric
the array

ARYFRAME Number of total rows 1-32767 numeric Corresponds to the initial()
currently allocated for the specification during array
array creation but may change as the

array is extended

ARYINC Increment used when 1-32767 numeric Corresponds to the inc()

extending the array specification during array
creation

ARYSTOR Total number of bytes numeric This includes the array itself
occupied by the array the array descriptor block,
itself and all associated lookaside tables as well as sort
control blocks and filter descriptor blocks.

ARYLROWS Number of rows matching 0-32767 numeric
the current view

ARYCOLS Number of columns of thg 1-32767 numeric
array

ARYPOS Current position within | 1-32767 numeric
the array

ARYSORT Specifies whether sort | YES or NO
criteria have been
attached to the array

Chapter 10. Accessing Array Data with AutoOPERATOR EXE@3

ARRAY INFO

TSO/E Variables Returned from INFO

ARYFILTER Specifies whether a view| YES or NO
has been attached to the
array

ARYCOLN.n The name of all columns| 1-255, character ARYCOLN.1, ARYCOLN.2
of the array etc.

ARYCOLW.n The width of the indicated 1-32767 numeric ARYCOLW.1, ARYCOLW.2
column etc.

Condition codes are listed in the following table.

Value Description
0 Command was successfully executed.
8 Array not found.
16 Syntax error.
Example

This EXEC connects to the array named DASDSTAT and establishes a view of the array which makes only those
rows eligible where column STAT has the contents of ACTIVE. It then sorts the resulting array by the contents of
column VOL and produces a list of all matching rows.

"IMFEXEC ARRAY CONNECT DASDSTAT™
"IMFEXEC ARRAY SETVIEW DASDSTAT CRITERIA(’STAT,,,=,””ACTIVE***)"
"IMFEXEC ARRAY SORT DASDSTAT CRITERIA(*VOL,,,A”)"
"IMFEXEC ARRAY INFO DASDSTAT"
"IMFEXEC MSG The following volumes are active:™
do I =1 to arylrows
"IMFEXEC ARRAY GET DASDSTAT™
"IMFEXEC ARRAY MSG "‘vol
end

204 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

ARRAY INSERT

ARRAY INSERT

This command identifies the view to be used for accessing data.

Command Parameters

ARRAY|ARY INSERT NAME
[POSITIONHERE|FIRST|LAST)]

The following table describes the parameters.

Parameter Function Notes
NAME The name of the array as established | 1-to 31-characters alphanumeric.
during array creation
POSITION Position in the array where row will be | Could be one of the following values:
inserted
HERE
At the current position
FIRST

At the top of the array (element 1

~

LAST
As the last element of the element

>

If the array is ordered, the current positig
will always be determined by the sort
criteria and field contents and this
specification will be ignored.

Condition codes are listed in the following table.

Value Description
0 Command was successfully executed.
8 Array not found.
12 Array not in UPDATE access.
16 Syntax error.
Example

This EXEC inserts a new row into the array referenced by the token contained in the variable DASDSTATS. It then
sets the value of this row and checkpoints the contents of the array to permanent storage.

unit=3EO0

vol=BAB301

stat=ACTIVE

"IMFEXEC ARRAY INSERT DASDSTATS"
"IMFEXEC ARRAY SAVE DASDSTATS"

Chapter 10. Accessing Array Data with AutoOPERATOR EXE@5

ARRAY LIST

ARRAY LIST

This command provides information about arrays in this BBI-SS PAS.

Command Parameters

ARRAY|ARY LIST [KEPT]

The following table describes the parameters.

Parameter Function Notes

KEPT Provide information about disconnected
arrays in storage (DISC with KEEP)

The following table describes the TSO/E variables returned from LIST.

TSO/E Variables Returned from LIST

NAME Contents Length/Format Example
ARYNAMEXX [Name of the array 1-31 characters
ARYTOKNXxx Token of the array if 15 characters

disconnected

ARYCOUNT Count of arrays found

Condition codes are listed in the following table.

Value Description
0 Command was successfully executed.
16 Syntax error.

Example

This EXEC locates all disconnected arrays. It subsequently deletes all of them.

"IMFEXEC ARRAY LIST KEPT"

do j=1 to arycount
"IMFEXEC ARRAY CONNECT "aryname.j" TOKEN('arytokn.j')"
"IMFEXEC ARRAY DISC "aryname.j' NOSAVE"

end

206 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

ARRAY PUT

ARRAY PUT

This command sets values of the current row of an array.

Command Parameters

ARRAY|ARY PUT NAME

The following table describes the parameters.

Parameter Function Notes

NAME The name of the array as established | 1-to 31-characters alphanumeric.
during array creation

Condition codes are listed in the following table.

Value Description
0 Command was successfully executed
8 Invalid array token
12 Array not in UPDATE access
16 Syntax error
Example

This EXEC locates the row containing the definition for volume BAB301 in the array DASDSTATS. It then sets the
current status of this volume.

"IMFEXEC ARRAY CONNECT DASDSTATS UPDATE"

"IMFEXEC ARRAY FIND DASDSTATS ROW(1) CRITERIA(’VOL,,,=,”?BAB301”"*)"
"IMFEXEC ARRAY GET DASDSTATS"

stat=ACTIVE

"IMFEXEC ARRAY PUT DASDSTATS"

"IMFEXEC ARRAY DISC DASDSTATS SAVE"

Chapter 10. Accessing Array Data with AutoOPERATOR EXECO7

ARRAY SAVE

ARRAY SAVE

This command checkpoints an AutoOPERATOR array. An array that was connected with the PAGE keyword cannot
be saved. Use DISC/CONNECT for these arrays instead.

Command Parameters

ARRAY|ARY SAVE NAME

The following table describes the parameters.

Parameter Function Notes

NAME The name of the array as established | 1-to 31-characters alphanumeric.
during array creation

Condition codes are listed in the following table.

Value Description
0 Command was successfully executed.
8 Array not found or I/O error writing to disk.
16 Syntax error.
Example

This EXEC inserts a new row into the array referenced by the token contained in the variable DASDSTATS. It then
sets the value of this row and checkpoints the contents of the array to permanent storage.

unit=3EO0

vol=BAB301

stat=ACTIVE

"IMFEXEC ARRAY INSERT DASDSTATS"
"IMFEXEC ARRAY SAVE DASDSTATS"

208 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

ARRAY SET

ARRAY SET

This command transfers the entire contents of an array into REXX variables.

Command Parameters
ARRAY|ARY SET NAME
[TRIM|NOTRIM

The following table describes the parameters.

Parameter Function Notes

NAME The name of the array as established | 1-to 31-characters alphanumeric.
during array creation

TRIM Defines whether leading and trailing The default is NOTRIM.
blanks are removed (trimmed)

This command takes all rows and columns and creates REXX variables from them. Each variable name is identical to
the column that it was derived from. A period ‘.’ is then appended (effectively turning it into a stem variable) and
then a counter is added for the row that it was copied from.

For example: For a column of UNIT, TSO/E variables of the name UNIT.1 to UNIT.xx are created.
This command functions properly only on column names that do not exceed 26 characters in length (since it appends
.()xxxxx to the variable name). If column names exceeding 26 characters in length are found, a return code of 8 is

returned.

Condition codes are listed in the following table.

Value Description
0 Command was successfully executed.
4 Array is empty.
8 Array not found or column name wider than 26 characters was found.
16 Syntax error.
Example

This EXEC connects to the array DASDSTAT and sets all columns and rows to their respective REXX variables. It
then writes a message to the log designating the contents of the ‘unit’ column of the first row.

“IMFEXEC ARRAY CONNECT DASDSTAT”
“IMFEXEC ARRAY SET DASDSTAT”
"IMFEXEC ARRAY DISC DASDSTAT NOSAVE™
"IMFEXEC MSG "unit.1

Chapter 10. Accessing Array Data with AutoOPERATOR EXE@9

ARRAY SETVIEW

ARRAY SETVIEW

This command limits access to an array to those rows matching certain criteria.

Command Parameters

ARRAY|ARY SETVIEW NAME
[CRITERIA]
[FUNCTION(DELETE|APPEND)]

The following table describes the parameters.

Parameter Function Notes
NAME The name of the array as established | 1-to 31-characters alphanumeric.
during array creation
CRITERIA Criteria to which that the row must See comments below this table
conform
FUNCTION Indicator on how to treat specs One of the following values:
DELETE
Remove all filter criteria.
APPEND

Append this specification to any
already existing specifications.

Otherwise, create a new view with the
given criteria.

Any number of criteria may be specified, connected by Boolean operators AND and OR. Entries may be of one of the
following two formats:

Boolean operator (AND, OR), except for first criterion when not specifying APPEND.
Column name, 1-255 characters

Starting position, default is 1

Length used for comparison, default width of column+1 - starting position
Comparison operator, one of the following: LT, LE, EQ, GE, GT,NE,<,<=,=,>=>,<> "=
Column name, 1-255 characters

Starting position, default is 1

Length used for comparison, default width of column+1 - starting position

Boolean operator (AND, OR), except for first criterion
Column name, 1-255 characters

Starting position, default is 1

210 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

ARRAY SETVIEW

* Length used for comparison, default width of column+1 - starting position
e Comparison operator, one of the following: LT, LE, EQ, GE, GT,NE,<,<=,=,>=,> <> "=

e Literal enclosed in quotation marks

The following table describes the TSO/E variables returned from SETVIEW.

TSO/E Variables Returned from SETVIEW

NAME Contents Length/Format Example

ARYLROWS Number of rows matching 0-32767 numeric
the current view

The following rules apply:

« When both fields contain numerics (except leading and trailing blanks), a numerical comparison is performed.
Both numbers will always be treated as unsigned integers.

* When a comparison with a literal is requested, a pattern comparison is performed (for example, wildcards such
as * and + may be used).

* When two columns with different lengths are compared, a comparison with the length of the shorter of the two is
done.

Condition codes are listed in the following table.

Value Description
0 Command was successfully executed.
8 Array not found.
12 Criteria parsing error.
16 Syntax error.
Example

This EXEC connects to the array DASDSTAT and establishes a view of the array which makes only those rows
eligible where column STAT has the contents of ACTIVE. It then sorts the resulting array by the contents of column
VOL and produces a list of all matching rows.

“IMFEXEC ARRAY CONNECT DASDSTAT”
“IMFEXEC ARRAY SETVIEW DASDSTAT CRITERIA(’STAT,,,=,”ACTIVE~~”)”
“IMFEXEC ARRAY SORT DASDSTAT CRITERIA(’VOL,,,A”)”
“IMFEXEC ARRAY INFO DASDSTAT
“IMFEXEC MSG The following volumes are active:”
do i=1 to railways
“IMFEXEC ARRAY GET DASDSTAT SKIP”
“IMFEXEC ARRAY MSG “Val
end

Chapter 10. Accessing Array Data with AutoOPERATOR EXE@d 1

ARRAY SORT

ARRAY SORT

This command sorts an array according to user specifications. This command is invalid for arrays that were
connected using the PAGE keyword.

Command

Parameters

ARRAY|ARY SORT

NAME

[DELETE]

[CRITERIA(colname,(START),(LENGTH),(ORDER))]

The following table describes the parameters.

Parameter

Function

Notes

NAME

The name of the array as established
during array creation

1- to 31-characters alphanumeric.

CRITERIA

Sort criteria to be used

The contents of this parameter are:
colname,START,LENGTH,ORDER
where

colname
Name of the referenced column i
the array

START
Starting position for sort argumen
(default is 1)

LENGTH
Length of comparison (default is
length of column)

ORDER
Ascending or descending

Multiple sort arguments may be supplie

o

DELETE

Removes any array ordering

Default is delete.

Removes any sequence binding

After specifying a sort order for an array, the array will be kept sequenced when further insert activity occurs. If high
insert activity is expected, it is advisable to remove ordering temporarily, insert all changes, and then respecifiy the

sort order. SORT and SETVIEW may be specified in conjunction.

Condition codes are listed in the following table.

Value

Description

0

Command was successfully executed.

212 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

ARRAY SORT

4 Criteria parsing error (invalid or missing criteria definition).
8 Array not found.
16 Syntax error.

Example

This EXEC connects to the array DASDSTATS and sorts by the columns STAT and VOL in ascending order.

"IMFEXEC CONNECT DASDSTATS™
"ARRAY SORT MYTEST CRITERIA(TROW1,,,A")™

Chapter 10. Accessing Array Data with AutoOPERATOR EXE@d4 3

ARRAY SORT

214 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Chapter 11. Using the MAINVIEW API

This chapter describes how to use the MAINVIEW API. The MAINVIEW API includes specific commands,
functions and facilities that allow AutoOPERATOR users to access data available on the MAINVIEW Databus with
AutoOPERATOR EXECs.

Note that the use of this API requires that you are familiar with MAINVIEW AutoOPERATOR IMFEXEC
commands and MAINVIEW technology. The API is a cross-platform product which allows you to access data from
MAINVIEW technology using AutoOPERATOR automation techniques.

It is also recommended that you have some knowledge about how to use AutoOPERATOR EXECs to access array
data. For information about this facility, refer to “Accessing Array Data with AutoOPERATOR EXECs” on page 189.

Overview

The following discussions introduce the MAINVIEW API and describe how to use it.

What Is the MAINVIEW API

The MAINVIEW API allows for a one-way data exchange between MAINVIEW-based products such as
MAINVIEW for CICS, MAINVIEW for OS/390, MAINVIEW for IMS (and others) and AutoOPERATOR REXX or
CLIST EXECs. Through the API, AutoOPERATOR EXECs can explicitly request the data from a MAINVIEW
product through an EXEC. The MAINVIEW API allows AutoOPERATOR to gather data from the MAINVIEW
Databus to flow from any of the MAINVIEW products into AutoOPERATOR.

AutoOPERATOR EXECs process the MAINVIEW data based on how a MAINVIEW view looks during a
MAINVIEW terminal session. This means you will see the exact same output in an EXEC for a view as you would
when it is displayed from a MAINVIEW terminal session.

Data from the MAINVIEW databus is shown in rows and columns (tabular format) so AutoOPERATOR processes
MAINVIEW data as an array. An array is a table that consists of one or more columns that are given names. In most
instances, an array is processed one row at a time, retrieving the contents of that row into TSO/E variables that are
available to an EXEC. There is a one-to-one relationship between the columns of a view and the columns in the
resulting array. Refer to “Customize MAINVIEW Views and Connect BBI-SS PAS to a CAS” for more information
about the naming conventions for array columns.

Customize MAINVIEW Views and Connect BBI-SS PAS to a CAS

Before AutoOPERATOR EXECs can access MAINVIEW data, you must perform two tasks:
e Customize the MAINVIEW views so that the EXECs can successfully retrieve the column names in variables.

* Connect the BBI-SS PAS to a CAS.

Customizing MAINVIEW Views

There is a relationship between the columns in a MAINVIEW view and the column names of the corresponding
array. This relationship is the name of the first header line of a column in a view is the nhame of the column of the

generated array and is also the name of the variable used when retrieving the row of an array (the second header line
is ignored).

Chapter 11. Using the MAINVIEW API215

While this naming convention is intuitive, it poses one major problem: many header lines in MAINVIEW product
views do not follow TSO/E variable naming conventions. For example, if a column is titled % TOT CPU, this cannot
produce valid variable name because

e It begins with a percent sign (%)

* |t contains blanks

The resulting array will show columns with these invalid names but you will still be able to retrieve the rows of a
cloumn. The array accepts these invalid names and this allows for simpler debugging when problems arise. You can
use the IMFEXEC ARRAY INFO command to display the names of the columns of an array and spot the invalid
names.

To resolve these issues, in most cases you must customize a MAINVIEW view to meet a specific need and then
update the header lines. The column headers are automatically translated to uppercase. Use the MV CUST facility to
create these views which will also allow you to eliminate columns of data that your EXEC is not interested in (such as
bar graphs).

Save the customized views and make them available to your BBI-SS PAS by adding a BBVDEF or other DD
statement and ensuring that a member in this data set contains the customized view. Ré¥ekli\HEW
Common Customization Guidad “MAINVIEW VIEW” on page 230 for information about BBVDEF and DD
statements.

Understanding Tabular and Detail Views
The MAINVIEW API supports both tabular and detail views.

When you choose to see data from a detail view, only one row containing the requested data is returned. When you
choose to see data from a tabular view, the data returned is exactly the same as the width specified by the view
customization. Header widths and data widths are independent from each other and you can specify a different width
for every column.

Detail views are returned in the same format as they are displayed in the view. A detail view expands the widths of all
columns in a row to match the size of the largest row. For example, if you specify three items in one row where one
column is 8 characters wide, the second column is 12 characters wide and the third column is 15 characters wide, the
data on the screen is aligned so that each item occupies a cell that is 15 characters wide.

The MAINVIEW API follows the same principle. Therefore, if you request data through the API where a row in a

detail view is set up as described above, the result creates an array where each variable has a width of 15 characters
instead of 3 variables of 8, 12 and 15 characters.

Connecting a BBI-SS PAS to a CAS

The second requirement is to ensure your BBI-SS PAS is connected to a CAS. Specify the ID of the CAS in the
BBPARM member BBISSP0O0 with the CASID= parameter.

When this is finished, you will see the message

CT33331 PAS ssid connected to CAS XxxX

during the startup of your AutoOPERATOR BBI-SS PAS whexex is the name of the CAS you specified with the
CASID= parameter.

216 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

If you do not see this message, you must determine the cause of the missing connection before you can continue. One
thing you can try is to establish a MAINVIEW terminal session, connect with the PAS in question and to invoke some
views of the products. If you cannot see data, the products will also be unavailable to the MAINVIEW API.

Once the MAINVIEW views are created and stored and the BBI-SS PAS is communicating with a CAS, you can
proceed to writing AutoOPERATOR EXECSs.

Using the IMFEXEC MAINVIEW Commands

The following sections provide information about the IMFEXEC MAINVIEW commands and using them with
specific parameters.

IMFEXEC MAINVIEW CONNECT
Use the IMFEXEC MAINVIEW CONNECT command to establish a channel.

Channels are the equivalent of a terminal session that interacts with MAINVIEW products. They are a simple
abstraction of a terminal session: they do not require you to log on to anything and they do not require any specific
definition; you must acquire one.

One advantage of channels is that you can have multiple channels just as if you had set up any number of terminal
sessions. Therefore, if your EXEC has to address many different products or views, it is easy to set up more than one
channel.

The IMFEXEC MAINVIEW CONNECT command has two parameters: Channel (a required parameter) and MSG
(an optional parameter).

The Channel parameter is required to address a specific channel (because you can have more than one) in all
IMFEXEC MAINVIEW operations. You can provide the name of a TSO/E variable that will receive a token that
uniquely identifies the channel you are addressing. The contents of this variable is used in later IMFEXEC
MAINVIEW operations.

Use the MSG parameter to write any error messages to the BBI Journal. During a MAINVIEW terminal sessions you
might have experienced a sequence of cascading error messages that explain why a specific operation could not be
executed. These exact same statements are turned to an EXEC when an operation failed. By default these messages
are added as variables LINE.O to LINE.xx. In a TSO/E CLIST, the messages are returned as LINE_O to LINE_ xx.

While you can process these error messages programmatically, during development of a new EXEC it may be useful
to see them in the BBI Journal without having to explicitly write them out which is what the MSG parameter does. If
specified, any error message associated with an operation using this channel is written to the BBI Journal. When the
EXEC reaches a production stage, you can remove the MSG parameter to avoid cluttering the Journal.

In summary, a channel is a data transport vehicle requested with the IMFEXEC MAINVIEW CONNECT command
and identified by the contents of a variable that you specific.

IMFEXEC MAINVIEW CONTEXT

After a channel is established, point the channel at a particular context with the IMFEXEC MAINVIEW CONTEXT
command. The only two parameters absolutely required are the channel you are using and the product you would like
to request data from (refer to “MAINVIEW CONTEXT” on page 223 for more information). However you can use
this command to point to a specific target or server. By doing this you can use SSI views right out of
AutoOPERATOR without having to consolidate the results yourself.

Chapter 11. Using the MAINVIEW API 217

If the target is currently unavailable, you can retry at a later point in time or you can code the WAIT parameter and
give the API the opportunity to watch for the availability of your context. If the WAIT times out, you are informed
and you can take other actions.

IMFEXEC MAINVIEW VIEW

Once you have gained access to the product, you can access data from the view that you are interested in (just as you
would in a regular terminal session) with the IMFEXEC MAINVIEW VIEW command. Refer to “MAINVIEW
VIEW” on page 230 for more information.

IMFEXEC MAINVIEW VIEW returns the view name and channel token. The API validates that the view exists and
reads its definition.

IMFEXEC MV VIEW will, by default, use views allocated to DDNAME BBVDEF, whether that DDNAME was
allocated through JCL or dynamically allocated. This DDNAME can be overridden with the DD(ddname) keyword
on the IMFEXEC MV VIEW command.

You might also consider adding view libraries to the currently existing BBIPARM DDNAME concatenation to avoid
the need to modify JCL. However, in that case, DD(BBIPARM) must be coded on the IMFEXEC MV VIEW
statement.

The data set containing views must have a dataset attribute of LRECL 80.

IMFEXEC MAINVIEW GETDATA
Use IMFEXEC MAINVIEW GETDATA to retrieve the actual data. Refer to“MAINVIEW GETDATA” on page 225.

The two required parameters for this command are the channel name (CHANNEL) and the name of an array
(ARRAY). The array is built using the column names you specify and it has as many rows as necessary to
accommodate all the data. Make sure the array does not already exist because this command will not overwrite an
existing array.

Another parameter that is required the first time you issue this command is REFRESH. If you request data for the first
time you must specify this keyword or no data will be returned.

Using the REFRESH parameter is very critical when you need to process subsets of data from a large array. For
certain views, a large amount of data may be returned and you will want to process data in subsets. In this case you
can use the parameters START and COUNT which allow you to specify (in terms of rows) a subset of data from a
view.

As you process these subsets of data, do not use the REFRESH parameter on subsequent operations to ensure the data
in the view is constant. When you want fresh data to be retrieved, use the REFRESH parameter again.

If neither the START nor the COUNT parameters are specified, all of the available data is returned.

When the data is available to you in the array, you can process it using IMFEXEC ARRAY statements. Refer to
“Accessing Array Data with AutoOPERATOR EXECSs” on page 189.

Once you are have retrieved you data and no longer have a use for the channel, it is good practice to release all
resources with the IMFEXEC MAINVIEW RELEASE command (“MAINVIEW RELEASE” on page 227). If your
EXEC immediately terminates after doing so you can skip the release step because EXEC termination clean up will
release the resources for you.

218 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

If you do not need the contents of the array anymore, disconnect from it. Remember, arrays can be passed between
EXECs and as such termination cleanup will KEEP the array, just in case another EXEC needs it.

The following table lists the IMFEXEC MAINVIEW commands and the page number for additional information.

Command Page Function

CONNECT 221 Request a new channel to be used in subsequent requests.
CONTEXT 223 Connect a channel with a specified context or target.
GETDATA 225 Return collected view data.

RELEASE 227 Release all resources associated with a channel.

TRACE 228 Turn TRACE information on or off.

VIEW 230 Identify the view to be used for accessing data.

Chapter 11. Using the MAINVIEW API219

General Coding Conventions

The following sections briefly describe the coding conventions for using the IMFEXEC MAINVIEW commands.

Note: Every command described in this chapter is prefixed by the literal MAINVIEW | MV to avoid naming
conflicts with existing IMFEXEC constructs. MV is a valid abbreviation.

Using Variable Names

Variable names are limited to 32 characters in length. The first character of the variable must be alphanumeric or one
of the following special characters:

e 3
s @
. #

Reading Condition Codes

Every command returns a condition code in the variable IMFCC in the TSO pool. Refer to Chapter 4, “Using
Variables in REXX EXECs” on page 49 for more information about pools.

Each IMFEXEC command statement description includes a table describing the parameters for the command. The
table uses the following format:

Parameter Function Notes

1 2 3

The numbers in this table correspond to the following descriptions:

1 A short parameter identifier. If the parameter has uppercase letters, this identifier must be coded exactly as
shown.

If parts of the identifier are shownliold, this parameter can be abbreviated, using the bold letters.

Positional parameters are not associated with a specific identifier. In these cases, this column contains an alias
that describes the parameter.

2 The function of the parameter.

3 Notes about the parameter. Typically, these notes describe any length, value, range, or string limitations.

Note: When you invoke a REXX EXEC that has at least one keyword on the PROC statement, you must invoke the
EXEC using at least one keyword.

220 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

MAINVIEW CONNECT

MAINVIEW CONNECT

This command causes a new channel to be used in subsequent channel requests. A channel must be connected before
any MAINVIEW data can be requested using the low-level API.

Command Parameters

MAINVIEW|MV CONNECT Channel
[MSG |NOMSG]

The following table describes the parameters.

Parameter Function Notes

Name of channel Variable name to receive the token thatl- to 32-characters alphanumeric.
will identify the connected channel.
This variable name will be used by othe
IMFEXEC MAINVIEW statements

=

Message option Controls the writing of exception One of the following values:
messages to the journal.
MSG
Exception messages are written {o
the journal.
NOMSG

No exception messages are
written to the journal (default).

Condition codes are listed in the following table.

Value Description

0 A new channel was successfully connected and may be referenced by the supplied yariable
token.

8 A channel could not be acquired. This condition can occur when a BBI-SS PAS or CAS has

not been started. Otherwise, use MV TRACE to collect trace information and then cqgntact
BMC Customer Support.

16 Syntax error detected during parsing:

e Invalid keywords
* Missing channel parameter

20 The maximum MAINVIEW session count has been exceeded. The request is failed. [The
total number of sessions supported PER SS is 150. You might want to retry the request after
inserting an IMFEXEC WAIT().

Chapter 11. Using the MAINVIEW API 221

MAINVIEW CONNECT

Example

This example shows an EXEC that requests a new channel to be used in subsequent channel requests. The token for
this channel is placed into the variabBCHANNEL.

“IMFEXEC MAINVIEW CONNECT JOBCHANNEL”

All other examples in this chapter use the variable named JOBCHANNEL to represent the token that identifies the
connected channel.

222 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

MAINVIEW CONTEXT

MAINVIEW CONTEXT

This command connects a channel with a specified context or target and optionally waits for it to become available.

Command Parameters

MAINVIEW|MV CONTEXT PRODUCT (product name)
TARGET (target identifier)
[SERVER(server name)]
[WAIT(n)]
CHANNEL(channelname)

The following table describes the parameters.

Parameter Function Notes
PRODUCT Product to which a connection is to be | One of the following products:
established.
MVMVS

MAINVIEW for OS/390

CMF
CMF Monitor

MVCICS
MAINVIEW for CICS

MVVP
MAINVIEW VistaPoint

MVDB2
MAINVIEW for DB2

MVIMS
MAINVIEW for IMS

IPSM
MAINVIEW for IMSPlex

MVMQS
MAINVIEW for MQSeries

TARGET Context or target to which a connection |s1- to 8-characters alphanumeric.
to be established.

SERVER Can be used in target mode to distinguish- to 8-characters alphanumeric. The
between different products that contain| default is all servers.
the same target name.

Chapter 11. Using the MAINVIEW API 223

MAINVIEW CONTEXT

WAIT Number of minutes to wait until target | 0 - 99999. The default is 0.
becomes available.
If WAIT is specified and a target is not
available, a connection is implicitly
retried every 10 seconds.

CHANNEL Token that identifies a previously 1- to 32-characters alphanumeric.
connected channel.

Condition codes are listed in the following table.

Value Description
0 The product or target connection was successfully established. The channel is available to
retrieve data from the databus.
8 The connection could not be established.
12 The specified channel could not be located.
16 Syntax error detected or invalid channel token supplied.
Example

This example shows an EXEC that requests an immediate connection to product MVMVS with a target of SJISB. The
connection is to use the previously connected channel whose token is contained in the)2BGaARNEL .

“IMFEXEC MAINVIEW CONTEXT PRODUCT(MVMVS) TARGET(SJSB) CHANNEL(**JOBCHANNEL’")”

224 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

MAINVIEW GETDATA

MAINVIEW GETDATA

This command returns some or all of the collected view data.

Command

Parameters

MAINVIEW|MV GETDATA

ARRAY (arrayname)
[START(n)]

[COUNT(n)]

[REFRESH]
CHANNEL(channelname)

The following table describes the parameters.

restored.

given channel requires REFRESH.

In addition:

* Always specify REFRESH on the
first call.

e« When using START and COUNT
and you are traversing the result se
do not specify REFRESH (because
you do not want the result set to
change).

* When you want a new result setto i
obtained (which you always want td

unless you are in the situation above)

always specify RERESH.

Chapter 11. Using the MAINVIEW API 225

U7

—

=

a

Parameter Function Notes
ARRAY Name of the array in which both the datal- to 31-characters alphanumeric.
and the data definition will be returned.

The specified array must not exist. An
existing array will not be overwritten.
All information about the returned data i
implicitly returned in the array.

START Starting row for the request. 1-99999 numeric. The default is row
To request a subset of the data, specify
START value and a COUNT value.

COUNT Number of rows of data to retrieve. 1-99999 numeric. The default is all rpws.
To request a subset of the data, specify
START value and a COUNT value.

REFRESH Specifies that the selector for this data|bEhe first request for data from a view in a

9]

MAINVIEW GETDATA

Message option Controls the writing of exception One of the following values:
messages to the journal.
MSG
Exception messages are written to
the journal.
NOMSG

No exception messages are
written to the journal (default).

CHANNEL Token that identifies a previously 1- to 32-characters alphanumeric.
connected channel.

Condition codes are listed in the following table.

Value Description

0 All of the requested data was successfully retrieved.

4 The specified array could not be built because it already exists.

8 The requested data could not be retrieved. Examine the accompanying error messages for

details. If NOMSG was specified on CONNECT, display the contents of LINE.xxxx.

This return code may also indicate that the START() keyword specified a value that was
higher than the number of available records (in which case no records can be returned).

12 The specified channel could not be found.

16 A syntax error was detected or invalid parameters were supplied.

20 An internal error was received.

24 The number of rows returned exceeds the maximum allowed (or 32767). When this

condition code is issued, 32767 rows of data will be returned. After processing the retirned
data, the user can redrive the IMFEXEC MV GETDATA udr@W(32768)o obtain any
additional rows. When redriving IMFEXEC MV GETDATA to obtain additional rows, do
not use REFRESH.

Example

This example shows an EXEC that retrieves data from a previously specified view in the channel called
DATACHANNEL. For all rows it prints the column with the element name VOL to the AutoOPERATOR journal.

"IMFEXEC MAINVIEW GETDATA CHANNEL(**DASDCHANNEL') ARRAY(DASDSTAT) START(1) COUNT(20) REFRESH"
"IMFEXEC ARRAY INFO DASDSTAT"
"IMFEXEC MSG The following volumes are active:"
do i=1 to arylrows
"IMFEXEC ARRAY GET DASDSTAT SKIP™
"IMFEXEC ARRAY MSG "vol
end

226 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

MAINVIEW RELEASE

MAINVIEW RELEASE

This command releases all resources associated with an API channel.

Command Parameters

MAINVIEW|MV RELEASE CHANNEL(channelname)

The following table describes the parameters.

Parameter Function Notes

CHANNEL Token that identifies a previously 1- to 32-characters alphanumeric.
connected channel.

Condition codes are listed in the following table.

Value Description

0 The specified channel was successfully released.

8 An unspecified error occurred while releasing the channel.

12 The specified channel could not be found.

16 Syntax error detected or invalid parameters supplied.
Example

This example shows an EXEC that frees all resources associated with the channel whose token is contained in the
variableJOBCHANNEL. It then discards any MAINVIEW data returned in the array calGBDATA.

"IMFEXEC MAINVIEW RELEASE CHANNEL(*JOBCHANNEL'™)™
"IMFEXEC ARRAY DISC JOBDATA NOSAVE"

Chapter 11. Using the MAINVIEW API 227

MAINVIEW TRACE

MAINVIEW TRACE

This command requests trace information to be written to the BBI Journal. Trace information includes the name of
the command, the return code, and internal completion and reason codes. Use this command with the generated
output whenever contacting BMC Customer Support.

Command Parameters

MAINVIEW|MV TRACE ON | OFF

This command is independent of the MSG keyword on the CONNECT statement.

The following table describes the parameters.

Parameter Function Notes

ON Turns MAINVIEW API tracing on. The ON or OFF parameter must be
specified with this command.

There is no default value.

OFF Turns MAINVIEW API tracing off. The ON or OFF parameter must be
specified with this command.

There is no default value.

Condition codes are listed in the following table.

Value Description
0 Tracing was successfully turned ON or OFF
16 Syntax error detected during parsing

228 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

MAINVIEW TRACE

Example

This example shows an EXEC that requests that all further MAINVIEW API requests be accompanied by trace
information.

“IMFEXEC MAINVIEW TRACE ON”

Chapter 11. Using the MAINVIEW API 229

MAINVIEW VIEW

MAINVIEW VIEW

This command identifies the view to be used for accessing data.

Command Parameters

MAINVIEW|MV VIEW NAME (viewname)
[STEM(stemname)]
[DD(ddname)]

CHANNEL(channelname)

[PARMS(parml...parm2...pamj

The following table describes the parameters.

Parameter

Function

Notes

NAME

View name that describes the request.

1- to 8-characters alphanumeric.

VIEW is an alias for this parameter.

STEM

Stem name of a set of REXX variables
containing the view definitions.

1- to 26-characters alphanumeric.

This parameter may be used to
dynamically specify view contents. A rogt
for a set of stem variables is specified.
The variable root.0 contains the total
count of stem variables. The actual view
is contained in the variables root.1
through root.x. The syntax of the
specified view is identical to that of the
view normally found in the BBVDEF
dataset.

DD

DD name to use to access the view fror
the BBI-SS PAS.

n1- to 8-characters alphanumeric.

If a DD name is specified, it must be
allocated to the PAS. This can be done
either statically or dynamically.

If a DD name is specified, the view is read
from the DD specified in the calling
address space. BBVDEF is the DD that
contains the distributed views for
accessing AUutoOPERATOR data.

If a DD name is not specified, the view |s
accessed from the BBI-SS PAS of the
context service point.

230 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

MAINVIEW VIEW

PARMS View parameters as they would be entetledi— to 80-characters alphanumeric.
on the command line or in a hyperlink.
Parameters in parentheses must be
enclosed in quotation marks.

CHANNEL Token that identifies a previously 1- to 32-characters alphanumeric.
connected channel.

Condition codes are listed in the following table.

Value Description
0 The view was successfully read and parsed. It is available for subsequent GETDATA
requests.
4 The specified view could not be read.
8 Bad stem variable specification. The specified variables could not be found.
12 The specified channel could not be found.
16 Syntax error detected or invalid parameters supplied.
Example

This example shows an EXEC that requests that view JOVER be read and parsed. The view will be read from the
target BBI-SS PAS. The connection is to use the previously connected channel whose token is contained in the
variableJOBCHANNEL.

"IMFEXEC MAINVIEW VIEW NAME(JOVER) CHANNEL(**JOBCHANNEL'™)"

The following example demonstrates how the STEM() parameter may be used to dynamically specify a view:

/* REXX */

"ALLOC F(VIEW) DA("BBI126.BAORAE.BBVDEF(PLEX1) ") SHR REUSE"
address MVS

"EXECIO * DISKR VIEW (STEM DEFS. FINIS)"

address IMFEXEC

"MV CONNECT MYCHANNEL MSG"

"MV CONTEXT PRODUCT(PLEXMGR) CHANNEL (*'MYCHANNEL'")"

"MV VIEW STEM(DEFS) CHANNEL(**MYCHANNEL') VIEW(PLEX1)"
"MV GETDATA CHANNEL(**MYCHANNEL') ARRAY(RESULTS) REFRESH"
"MV RELEASE CHANNEL(**MYCHANNEL')"

"ARRAY DISC RESULTS NOSAVE

Chapter 11. Using the MAINVIEW API 231

Sample Program

The sample program in this section illustrates the use of the MAINVIEW API for a complete application.

/* rexx */

* *
;***;
/* This EXEC demonstrates the use of the MAINVIEW to AO API. */
/* 1t assumes that a customized View -JTEST- exists in a dataset allocated */
/* under the BBVDEF DD statement. */
/* The reason for this is that the names of the columns for the generated */
/* AO array are taken from the HEADER1 columns of the actual BBI-3 View. */
/* AO arrays are processed by taking a row of such an array and introducing */
/* the contents of a row into variable names of the same name. Most BBI-3 */
/* do not lend themselves very well to that purpose since they contain */
/* characters (or even multiple words) that do not translate to individual */
/* variable names (they are invalid variable names). */
/* One of the options would have been to make some arbitrary translations. */
/* However, since the user subsequently needs to know the names of such */
/* variables to process them, this would not have been a useful exercise. >/

/* It is easy for a user to determine whether invalid variable names exist */
/* by querying the array itself and displaying the column names (which ARE */
/* allowed to be set to names that do not translate to variables). This EXEC */

/* demonstrates this approach amongst other things. */
/* */
/* All failures of the MV APl commands rely on the API"s cleanup. */
/* */
/* Note: AIl MV APl commands begin with the prefix -IMFEXEC MV- followed */
/* by the desired A0l function. */

/***/

/* The following command turns on MV tracing, a function that causes */
/* the name of the executed command, the name of the EXEC, return code from */
/* the command as well as APl completion and reason code to be automatically */
/* displayed, without having to hand-code it. We may or may not document this*/
/* function to the user. */

"IMFEXEC MV TRACE ON"

/***/

/* Now we obtain a channel. An AO equivalent (but not identical to) the BBI-3*/
/* token is supposed to be returned in the variable -MYCHANNEL- */
/ /

"IMFEXEC MV CONNECT MYCHANNEL MSG"
"IMFEXEC MSG “"MVAPICMP: "mvapicmp' MVAPIRSN: "mvapirsn'""
if rc <> 0 then do
"IMFEXEC MSG *MV CONNECT failed™"
exit
end

232 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

/ /

/* Establish a connection to the product -MVMVS-, wait a maximum of one */
/* minute (we automatically retry every minute without the user having to */
/* specify this number) and use the previously acquired channel (as tokenized*/
/* in the variable -MYCHANNEL-). */
/ /

"IMFEXEC MV CONTEXT PRODUCT(MVMVS) WAIT(1) CHANNEL(*'MYCHANNEL')"
if rc <> 0 then do
"IMFEXEC MSG "MV CONTEXT failed™"

exit
end
/ /
/* Set the proper View -JTEST- using out channel. */

/* Please note that unlike the underlying assembler APl no information about */
/* the element map is returned. This is deferred until the actual GETDATA */
/* and then presented in the array structure. */
/ /

"IMFEXEC MV VIEW VIEW(JTEST) CHANNEL("'MYCHANNEL')"
if rc <> 0 then do
"IMFEXEC MSG "MV VIEW failed™"

exit
end
/ /
/* The data is retrieved. */
/* Any array with the name -RESULTS- is created. The data is refreshed. */
/ /

"IMFEXEC MV GETDATA CHANNEL("'MYCHANNEL'™) ARRAY(RESULTS) REFRESH"
if rc <> 0 then do
"IMFEXEC MSG "MV GETDATA failed™"

exit

end

/ nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn /
/* At this point we want to find out what the names of the columns and their */
/* properties are. */
/* */
/* Note: In the process headers/variable names have been translated to */
/* uppercase. */
/ nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn /

/***/

/* We request all pertinent information about the array -RESULTS- and format.*/
/ /

"IMFEXEC ARRAY INFO RESULTS"

if rc <> 0 then do
"IMFEXEC MSG "ARRAY INFO failed™"
exit

end

Chapter 11. Using the MAINVIEW API 233

/ /
/* This is where we format the information. It has been returned by the */
/* previous command in the variables beginning with the literal -ARY-. */

/***/

"IMFEXEC MSG Number of rows: "arylrows
"IMFEXEC MSG Total storage in use for data: "arystor
"IMFEXEC MSG Number of columns returned: "arycols

"IMFEXEC MSG Detailed data information follows"
"IMFEXEC MSG === == e e e e e e "
"IMFEXEC MSG Width Name™

"IMFEXEC MSG —=—————m oo e a

/ /
/* Here we build one line per column that displays its name and width. */
/* A format of character is assumed. */
[FFFFFFREITAI AT IdA Ak rhddhhdhhrdbhddhddbhddrrdhbrddrrdrrdrrrdbrridrrdrrdirrhdirx /

do i=1 to arycols
"IMFEXEC MSG "left(arycolw.i,6)]|arycoln.i
end

coll=arycoln.1

/ /
/* At this point we display the complete contents of the array (the returned */
/* BBI-3 data). This is, of course, not advised for very large amounts of */
/* data. */
Y daiaiaiaiaiaisiaiaiasisiaiaisiaiaiaisiaiaiaiaiaiaisiaiaiaiaiaiaisiaiaiaiaiaiaiasiaiaiaiaiaiaiaisiaiaiasioiaiaiaiaiaiaiaiaiaiaiaiaiaiaiaialaiaiaialotalalale /

"IMFEXEC MSG Displaying complete ARRAY contents"

/ /
/* Build a header line that properly names each column and is aligned. */
[FFFFFFREIT AL d Ik hdAhhkEhddhhdkdhrdhbhddhddbhddrrdbrdirrdrrdrdrrdhbrridrrdrrdirrrirr /
line=""

do j=1 to arycols
line=line]|left(arycoln.j,arycolw.j+1)
end

"IMFEXEC MSG —————mm oo oo "
"IMFEXEC MSG “line
"IMFEXEC MSG — === mmmmmmmmmm oo "

/***/

/* Sort by jobname column */
/ /

"IMFEXEC ARRAY SORT RESULTS CRITERIA("JOBNAME,, ,A")"

/***/

/* Now retrieve each row, build a line from all column contents and show it. */
/ /

do i=1 to arylrows
"IMFEXEC ARRAY FIND RESULTS row("i'™)"
"IMFEXEC ARRAY GET "RESULTS
line=""

234 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

do j=1 to arycols
line=line] | left(value(“arycoln’j),arycolw.j)||" *
end

"IMFEXEC MSG "line

end

/ /
/* Clean the channel up. */
[FFFFFFRIRITAL AT I hdA Ak dhddbhdhhrdbhddhddbhddrrdhbrddrrdrrdrdrrdhbrrirrdrrdirrrirr /

"IMFEXEC MV RELEASE CHANNEL("*MYCHANNEL'")"*
if rc <> 0 then do
"IMFEXEC MSG "MV RELEASE failed™"

exit
end
/ /
/* We also get rid of the results array. By default the array could be picked*/
/* up at a later point by another EXEC and reprocessed. */

/***/

"IMFEXEC ARRAY DISC RESULTS NOSAVE"

/ /
/* If you are testing with this EXEC and for some reason, it does not work */
/* and this last statement is not executed, the next GETDATA will fail, */
/* indicating the array already exists. The quick remedy is to run */
/* the EXEC -DELARY- that will delete all disconnected (KEPT) arrays. */
/ /

Chapter 11. Using the MAINVIEW API 235

236 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Chapter 12. Using the IMFEXEC Statements

IMFEXEC statements provide automation services not available in a TSO command procedure or with a REXX
EXEC. The command syntax is the keyword IMFEXEC, followed by the command and any necessary parameters;

for example:

"IMFEXEC command [parameters]™

Valid delimiters for the command are blank characters. IMFEXEC keywoundsbe coded in uppercase.

ou
XX

at are

d any

Command Page Function

ALERT 241 Create an exception message in the ALERTS Application

BKPT 259 Used when testing EXECs with the EXEC Testing facility; allows y
to set a breakpoint anywhere in the EXEC, including in native RE
code

CHAP 260 Used to change the dispatching priority of the EXEC

CICS 261 Issue a command to a CICS target

CICSTRAN 304 Invoke a transaction in a CICS target

CMD 305 Issue a CICS, IMS, MVS, JES, or BBI command.

CNTL 321 Control listing of EXEC commands in the Journal Log

DOM 323 Delete an outstanding WTO or WTOR

EXIT 324 Terminate the EXEC and set return code

HB 325 Change the number of seconds between heartbeat messages th
sent from a BBI-SS PAS to the ELAN workstation.

IMFC 326 Issue IMF analyzer or monitor command

IMFC SET 331 Issue time-initiated requests from an EXEC

IMSTRAN 333 Initiate an IMS/VS transaction

JES3CMD 336 Issue a JES3 command

JESALLOC 337 Allocate a SYSOUT data set to the given DD name.

JESSUBM 337 Submit a JOB from a DD name or stem variables.

LOGOFF 339 Terminate a previously established OSPI session

LOGON 340 Establish or re-establish an OSPI session between an EXEC an
VTAM application

MSG 342 Write a message in the BBI-SS PAS Journal Log

NOTIFY 343 Initiate a pager request through the Elan workstation

POST 344 Posts a name for an EXEC that waits on that name

RECEIVE 346 Attempt to receive a screen for an OSPI session

Chapter 12. Using the IMFEXEC Statemen237

time

data

OR

OR

he

—t

Command Page Function

RES 347 Issue a SYSPROG service command

SCAN 349 Investigate and retrieve data for an OSPI session

SELECT 352 Invoke an EXEC or user program

SEND 356 Send a message to a TSO or IMS user

SESSINF 358 Write OSPI screen contents and relevant information to the
OSPISNAP DD command

SETTGT 359 Set the target system ID

SHARE 360 Exchanges variables with an AOAnywhere EXEC

STDTIME 362 Instruct Elan to get Greenwich date and time and local date and

SUBMIT 363 Submit a job to MVS

TAILOR 364 Enables you to manipulate the contents of members of partitioned
sets, or REXX stem variables (including a TSO CLIST variation)

TRANSMIT 376 Transmit modified OSPI screen contents to the application

TYPE 378 Enter data into an OSPI session

VCKP 380 Checkpoint PROFILE variables

VDCL 381 Define a variable structure

VDEL 383 Delete variable(s)

VDELL 386 Deletes one or more long variables from one of the AutoOPERAT
variable pools

VDEQ 388 Issue an MVS dequeue

VENQ 389 Issue an MVS enqueue

VGET 391 Retrieve variable(s) from a pool

VGETL 394 Copies one or more long variables from one of the AutoOPERAT]
pools into the TSO pool

VLST 395 Retrieve names of defined variable names

VLSTL 397 Retrieves a long variable from the specified pool and places it intg
TSO pool

VPUT 399 Store variable in a pool

VPUTL 402 Creates or sets a long variable from a variable in the TSO pool

WAIT 404 Pause for a fixed interval during EXEC processing

WAITLIST 405 Returns information about outstanding WAIT EXECs in variables
LINE1 through LINExx

WTO 407 Write a message to the system console

WTOR 410 Write a message to the system console and wait for a reply

238 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

Coding Conventions

General Coding Conventions

The following sections briefly describe the coding conventions for using the IMFEXEC command statements.

REXX Coding

Many of the IMFEXEC keywords contain parentheses. To avoid problems with REXX interpreting IMFEXEC
keywords as functions, enclose IMFEXEC statements in double quotation marks:

"IMFEXEC ALERT “CICSPROD has abended® QUEUE(cics)"

If you need to use a variable in a REXX IMFEXEC statement, it must not be coded within the double quotes. In the
following example, REXX will substitute a value for the variable CQUEUE:

"IMFEXEC ALERT "CICSPROD has abended®™ QUEUE('‘cqueue')"

In the above exampl&IMFEXEC ALERT “CICSPROD has abended™ QUEUE(" is the first part of the statement,
cqueue is the value to be substituted, and- is the second part of the statement.

Using Quotation Marks

The IMFEXEC commands conform to TSO CLIST coding conventions; for example, all parameters containing
embedded blanks must be enclosed in single quotation marks. To use a single quotation mark in a string of characters,
use two single quotation marks.

IMFEXEC MSG *"JOB ""1327802"" has abended” CLIST
"IMFEXEC MSG "JOB ""1327802"" has abended™" REXX
The resulting message appears in this format:

JOB "1327802" has abended

Using Variable Names

Variable names are limited to 32 characters in length. The first character of the variable must be alphanumeric or one
of the following special characters:

e %
s @
. #

Chapter 12. Using the IMFEXEC Statemen239

Coding Conventions

Reading Condition Codes

Every command returns a condition code in the variable IMFCC in the TSO pool. Refer to “Using Variables in REXX
EXECs” on page 49 for more information about pools.

Each IMFEXEC command statement description includes a table describing the parameters for the command. The
table uses the format:

Parameter Function Notes

1 2 3

The numbers in this table correspond to:

1 A short parameter identifier. If the parameter has uppercase letters, this identifier must be coded exactly as
shown.

If parts of the identifier are shown liold, this parameter can be abbreviated, using the bold letters.

Positional parameters are not associated with a specific identifier. In these cases, this column contains an alias
that describes the parameter.

2 The function of the parameter.

3 Notes about the parameter. Typically, these notes describe any length, value, range, or string limitations.

240 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

ALERT

ALERT

This command manages exception messages and message queues that can be displayed by any of the STATUS
applications and ALERTSs applications.

Command Parameters

ALERT alert-key
‘alert-text’
[FUNCTION(ADD|COUNT|CREATEQ|DELETE|DELETEQILISTQ|READQ)]
[ALARM(NOJYES)]

[COLOR(RED|PINK|YELLOW|DKBLUELTBLUE|GREEN|WHITE)]
[DISPOSEKEEP|DELETE)]

[ESCALATE(UP|DOWN)]

[ESCEXEC(‘'execname pl p2 p3 ... pn’)]

[EXEC(‘execname pl p2 p3 .. pn')]

[HELP(panelname)]
[INTERVAL(nNNn,nnnn,nnnn,nnnn,nnnn,nnnn)]j

[PCMD(‘cmd string')]

[POSITION(position)]
[PRI(CRITICAL|MAJOR|MINOR|WARNINGINFORMATIONAL |CLEARING)]
[PUBLISH(REPLACEADD|NO)]

[QUEUE(MAIN|gueue name)]

[RETAIN(YESINO)]

[SYSTEM(YESNO)]

[TARGET (target name)]

[TEXT('text string')]

[ORIGIN(origin)]

[UDATA('user data’)]

[USER(user name)]

Chapter 12. Using the IMFEXEC Statemeni241

ALERT

The following table describes the parameters.

Parameter

Function

Notes

alert-key

The key used to uniquely identify an
ALERT within a queue

Maximum length is 64 alphanumeric
positions. Required for:

FUNCTION(ADD)
FUNCTION(DELETE)

Optional for:

FUNCTION(READQ)

You must specify a unique key for every
ALERT you create. If you create a secon
ALERT with the same key as an already
existing ALERT, the second ALERT will
overwrite the first ALERT.

The key cannot contain blanks.

‘alert-text'

The text of the ALERT message

Maximum message length is 255
alphanumeric positions. Required for:

FUNCTION(ADD)

If the contents of the text are null but
specified (for example, zero length), the
ALERT text is replaced by/A. A
specification oN within the alert text
forces a line break. You must include a
blank space before and after usi\g

ALARM

Emit audible alarm from the terminal on
the ALERT Detail application

Possible values are:

YES Sound alarm

NO Do not sound alarm

NO is the default.

242 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

ALERT

Parameter Function Notes

—

COLOR|COL The color in which the ALERT is This parameter does not have any impag
displayed in the ALERT DETAIL and upon the ALERT OVERVIEW application
STATUS applications (overrides default
color associated with ALERT priority) When an ALERT's priority is increased or
decreased (with the ESCALATE
parameter), the new ALERT priority’s
color will always default to the following
list of colors:

CRITICAL(RED)
MAJORPINK)
MINOR(YELLOW)
WARNING(DKBLUE)
INFORMATIONAL(LTBLUE)
CLEARING(GREEN)

DISPOSE Allows you to specify whether an ALERT This keyword must be used with the
is kept or deleted when it has reached it INTERVAL keyword.

final escalation priority level
Possible values are:

KEEP Keep the ALERT in its queue

DELETE Delete the ALERT from the
queue
KEEP is the default.

The variable AMFEDISP returns the valuge
of this keyword.

ESCALATE Allows you to create ALERTSs that changeThis keyword must be used with the
in priority over a specified interval of time INTERVAL keyword.

Possible values are:

upP The ALERT priority is
upgraded from less critical to
more critical.

DOWN The ALERT priority is
downgraded from more critical
to less critical.

UP is the default.

The variable AMFEDIR returns the value
of this keyword.

Chapter 12. Using the IMFEXEC Statemeni243

ALERT

up EXEC and its parameters

Parameter Function Notes
ESCEXEC Allows you to specify an EXEC (with This keyword must be used with the
parameters) that is scheduled when the | INTERVAL keyword.
ALERT reaches its final priority level
The variable AMFEEXEC returns the
value of this keyword.
EXEC The name of the ALERT-initiated follow-| Maximum length is 256 characters.

Refer to “Parameters Passed to the EXE
on page 31 for more information about
parameters passed to ALERT-initiated
EXECs.

~n

FUNCTION|FUN

The function to be performed

Use the FUNCTION keyword with:

- ADD
« COUNT

« CREATEQ
- DELETE
- DELETEQ
« LISTQ

- READQ

For more information about these
functions and the return codes they

generate, refer to “FUNCTION Names an

IMFCC Return Codes” on page 249.

o

HELP

The name of an extended help panel

Maximum length is 8 characters.

This help panel is displayed when you
enter the EXPAND primary command in
the ALERT DETAIL application while the
cursor is positioned on the ALERT. The
help panel is a text member without any
formatting or control characters.

Create a partitioned dataset (LRECL FB

80) to contain your help members. Modif
your TSCLIST EXEC to insert this datase

into the PNLLIB concatenation.

— o~

244 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

ALERT

Parameter Function Notes
INTERVAL Allows you to specify one to six intervals| This keywordmust be usedwith the
of time over which the priority of an ESCALATE keyword and you must
ALERT will change specify at least one interval for an ALER
with ESCALATE specified. The variables
An ALERT's priority can either increase | AMFEINTL1 through AMFEINTG6 return
(become more critical) or decrease the values associated with this keyword.
(become less critical) in priority over the
specified time intervals. In addition, when you want to have an
ALERT change in priority, you must
The interval can be specified from 0 to | always code one interval more than the
9999 minutes. At least one interval must benumber of changes. No priority changes
specified for an ALERT when ESCALATH occur in the last interval.
is specified.
For example, if you want an ALERT to
When the final interval expires: change from MAJOR to CRITICAL, you
) - must code two interval periods.
* The action specified by the DISPOSE
keyword occurs (either the ALERT IS pefer to “Examples of ALERT Escalation]
deleted or kept) on page 254 for examples.
» If an EXEC is specified with the
ESCEXEC keyword, the EXEC is
scheduled
ORIGIN A new origin to assign to this ALERT A 1- to 8-character user-defined origin

assigned to the ALERT.

The first character cannot be a numeric,
The user-defined origin overrides the
EXEC's IMFSYSID (or the originating job
name for the EXEC).

C

hapter 12. Using the IMFEXEC Statemen245

ALERT

Parameter

Function

Notes

PCMD

A command to be executed if the termin
operator uses the TRANSFER commang
on the ALERT DETAIL panel

alAny command that is valid from the
I command line is a valid value for this
parameter.

Maximum length is 256 characters.

PCMD is executed as if it were entered (
the command line. You should use the
SYSTEM parameter (described below) g
include the BBI SYSTEM command for
ALERTS that contain PCMD to ensure thg
the target field of the transferred-to
application will be correct. If you use the
SYSTEM parameter, the SYSTEM
command is executed after all other
commands specified with PCMD have
executed.

For example:
PCMD("CICS;EX TRAN;SYSTEM SYSA®)
Note that if you have blanks in the PCML

statement, you must use single quote
marks.

=

At

POSITION|POS

The order of the ALERT in the queue tg
read

Valid values are in the range from 1 to
32,767.

This parameter is used only with the
READQ function.

PRIORITY

The priority of the ALERT

A valid value is one of the following:

CRITICAL(RED)
MAJOR(PINK)
MINOR(YELLOW)
WARNING (DKBLUE)
INFORMATIONAL(LTBLUE)
CLEARING(GREEN)

246 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

ALERT

Parameter

Function

Notes

PUBLISH

Specifies whether an ALERT is publishe
and how it is published to connected

PATROL Enterprise Manager workstation
that have subscribed to receive ALERTS
through the General Message Exchange
(GME).

dPossible values are as follows:

SREPLACE An ALERT replace for the
ALERT’s key/queue is sent
to all PATROL Enterprise
Manager workstations that
have subscribed to receive
ALERTS from this
AutoOPERATOR. Ifthere is
already an ALERT with that
key/queue on a PATROL
Enterprise Manager
workstation, it is deleted
before writing the new
ALERT with that key/queue

ADD An ALERT add is sent to all
workstations that have
subscribed to receive

ALERTS from this

AutoOPERATOR. Ifthere is

already an ALERT with that

key/queue on a PATROL

Enterprise Manager

workstation, it is not deleted

before writing the new

ALERT with that key/queue.

ADD is the default.
NO The ALERT is not written to
the connected PATROL
Enterprise Manager
workstations even if they

have subscribed to receive
ALERTS.

QUEUE|QUE

The name of the queue to access or int
which to place the ALERT

b Length can be 1 - 8 characters; embedd
blanks are valid.

Chapter 12. Using the IMFEXEC Statemenf247

ALERT

1)

o

that

Parameter Function Notes
RETAIN Allows you to specify that an ALERT will| Possible values are:
be retained across BBI-SS PAS restarts
(both cold and warm restarts) and MVS | YES Retain this ALERT in disk space
IPLs so that it can survive a BBI-SS
PAS warm or cold start.
Note that using this parameter causes the
ALERT to be written to DASD. Therefore] NO Do not retain this ALERT to
you should use this parameter only after| survive BBI-SS PAS warm or cold
careful consideration. A BBI-SS PAS starts.
(warm or cold) start or MVS IPL may .
eliminate the exceptional situation that NO is the default.
caused the ALERT in the first place. .

P ALERTS that specify RETAIN(YES)
cannot also specify the INTERVAL
keyword.

In other words, ALERTS that are to be
retained across BBI-SS PAS restarts or
MVS IPLs cannot change priority (either
increase or decrease).

The variable AMFRTAIN returns the value
of this keyword.

SYSTEM Determines whether or not the ALERT | The default is yes.

Detail processor switches the current target

to the origin of the ALERT when The target is changed to reflect what wa

processing a TRANSFER (PCMD) coded in the ORIGIN parameter or the
AutoOPERATOR SSID.

TARGET The target to which the ALERT is sent The ALERT is sent to the subsystem
manages the specified target and exists
only in that subsystem.

TEXT A pattern text string This parameter applies to only the REAI
and COUNT functions. Only ALERTSs
matching this text string are considered
during these operations.

UDATA Any desired user data string Maximum length is 256 bytes.

The contents of the UDATA field may be
retrieved using the READQ function.

USER The name of a user ID that the ALERT is A 1 - 8 character valid BBI-TS user ID.

addressed to

Contents of the user field can be used tq
tailorALERT DETAIL displays using the
ALERT DETAIL PROFILE panel. Referto
the "ALERT Management Facility”
chapter in thaVAINVIEW
AutoOPERATOR Basic Automation Guid
for more information.

248 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

ALERT

FUNCTION Keywords

The following table lists in alphabetical order the functions that can be used with the FUNCTION keyword in an
IMFEXEC ALERT EXEC statement. The possible return codes from each function are also listed and described in
the table.

Table 9. FUNCTION Names and IMFCC Return Codes

FUNCTION | Description IMFCC Return Code Description
Return
Code
Value
ADD Adds an ALERT to a queue and 0 Add was successful
creates a new queue if one does :
not already exist 8 NOIé)E not found in BBINOD when TARGET]
use

12 TARGET not found in BBIINT

16 TARGET AutoOPERATOR not available

20 ALERT queue is full
COUNT Counts the numbers of ALERTS in 0 COUNT was successful, count value is
a given queue returned in variable AMFCOUNT
Refer to “TSO Variables Returned 8 One of the following conditions is true:
from COUNT” on page 252 for « Queue does not exist

more information.
* NODE not found in BBINOD when
TARGET used

12 TARGET not found in BBIINT

16 TARGET AutoOPERATOR not available

CREATEQ Creates a new ALERT queue 0 Queue create was successful
4 Queue already exists
8 NODE not found in BBINOD when TARGET|
used

12 TARGET not found in BBIINT

16 TARGET AutoOPERATOR not available

Chapter 12. Using the IMFEXEC Statemeni249

ALERT

Table 9. FUNCTION Names and IMFCC Return Codes (Continued)

FUNCTION | Description IMFCC Return Code Description
Return
Code
Value
DELETE Deletes an ALERT by the ALERT] 0 Delete was successful
ke
y 4 ALERT does not exist
8 One of the following conditions is true:
¢ Queue does not exist
¢ NODE not found in BBINOD when
TARGET used
12 TARGET not found in BBIINT
16 TARGET AutoOPERATOR not available
DELETEQ Deletes an ALERT queue 0 Deleteq was successful
4 Queue does not exist
8 NODE not found in BBINOD when TARGET]
used
12 TARGET not found in BBIINT
16 TARGET AutoOPERATOR not available
LISTQ Lists (in TSO variable IMFNOL) 0 LISTQ was successful, ALERT queue datal
the number of ALERT queues returned
present in the target subsystem :
8 NODE not found in BBINOD when TARGET|
Refer to “TSO Variables Returned used
from LISTQ" on page 252 for 12 TARGET not found in BBIJNT
more information.
16 TARGET AutoOPERATOR not available
READQ Reads an ALERT from the queu¢ 0 READQ succesful, ALERT data returned
and returns the characteristics of - -
the ALERT in TSO variables 4 Either no match fO!JI’ld when using KEY
and/or TEXT criteria or the search ran past
Refer to “TSO Variables Returned the end of the queue when using the
from the READQ Parameter” on POSITION keyword.
page 251 for more information. 8 One of the following conditions is true:
¢ Queue does not exist
¢ NODE not found in BBINOD when
TARGET used
12 TARGET not found in BBIINT
16 TARGET AutoOPERATOR not available

250 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

is

ALERT

TSO Variables Returned from the READQ Parameter

The following table lists the TSO variables returned from the READQ parameter.

Name Contents Length/Format Example
AMFALARM Alarm value of the alert 1/Y (YES)orN Y (for YES)
(NO)
AMFCOLOR Color of ALERT 6 / As specified by | RED
COLOR parameter
AMFEDIR Increase or decrease the priority| 1/ Character (UorD) D
of the ALERT when it is escalated
AMFEDISP Keep or delete the ALERT at the 1/ Character (K or D)) KEEP
final escalation level
AMFEEXEC Name of EXEC and EXEC 0-256 / Character ALRTEXEC
parameters scheduled at final
escalation priority
AMFEINT1 Number (in minutes) from O to | 4 / Numeric (or null) | 15
AMFEINT2 9999
AMFEINT3
AMFEINT4
AMFEINT5
AMFEINT6
AMFEXEC EXEC and EXEC parameters 0-256 / Character DBSTART SHIFT2
associated with the ALERT
AMFHELP Extended Alert member name 8 / Character HELPXT2
AMFIDATE Date ALERT was issued 9OD-MMM -YY 14-FEB-92
AMFITIME Time ALERT was issued 8 / hh:mm:ss 12:02:24
AMFKEY Key of the ALERT 1-64 / Character DASDO1
AMFORGN Origin of ALERT 1-8 / Character CICSPROD
AMFPCMD Primary command specified in | 0-256 / Character CICS; EX TRAN
ALERT
AMFPRIOR Priority of ALERT 13/ As specified in | INFORMATIONAL
PRIORITY
parameter
AMFPSYS Value for SYSTEM keyword 1/Character(Yor |Y
(could be either YES or NO) null)
AMFPUB Value of the PUBLISH keyword | 2-7/ADD, ADD
when an ALERT is created REPLACE, or NO
AMFQUEUE Name of queue for ALERT 8 / Character MAIN

Chapter 12. Using the IMFEXEC Statemen251

ALERT

Name Contents Length/Format Example
AMFRTAIN Specifies whether or not to retain 1/ Character (Y orN)| Y
an ALERT across BBI-SS PAS
warm and cold starts
AMFSSID System from which ALERT was| 8 / Character SYSB
issued
AMFTEXT Text of the ALERT 0-255 / Character This is a test ALERT
AMFTGT Target to which ALERT was 1-8 / Character IMS22P
issued
AMFUDATA User data string 0-256 / Character Any value specified in UDATA
parameter
AMFUSER Name of the user ID that the 8 / Character JDB1
ALERT is addressed to

TSO Variables Returned from COUNT

The following table lists the TSO variables returned from the COUNT parameter.

Name

Contents

AMFCOUNT

Number of ALERTS in designated queue

TSO Variables Returned from LISTQ

The following table lists the TSO variables returned from the LISTQ parameter.

Name

Contents

IMFNOL

Number of queues present in the target susbsystem. In variables L
through LINEXxxX, it returns the names of all the queues. Limit is 500
gueue names.

NE1

252 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

ALERT

Examples

This section describes examples using the IMFEXEC ALERT command statement. A brief discussion follows the
example.

Example 1. Creating a Multi-line ALERT

/* REXX */

"IMFEXEC ALERT NETW2",

""COMMUNICATION LINES DOWN: /N - DALLAS /N + - CHICAGO"™ FUNCTION",
""(ADD) QUEUE(NETWORK)",

"PRIORITY(CRITICAL) COLOR(PINK)"

ALERTS are created as single-line messages unless you use the chzkaciéhng alert-text parameter. The
character#N indicate the beginning of a new line of alert-text.

You must use a blank space before and aftelin the example above, the alert-text parameters includes the dse of
in two places. The EXEC command in this example produces the following multi-line ALERT:

11:43 CHICAGO COMMUNICATION LINES DOWN:
- DALLAS
- CHICAGO

Example 2: Associating a Help Panel with an ALERT

/* REXX */
"IMFEXEC ALERT NETW1",

"""ALMO100 - 8100 COMMUNICATION LINE DOWN: /N - CHI998A21"",
"FUNCTION(ADD) QUEUE(NETWORK) PRIORITY(WARNING) HELP(H8100)",
"'COLOR(RED)""

Use the HELP keyword of the IMFEXEC ALERT command statement to indicate there is a help panel associated
with an ALERT.

Prior to using the HELP keyword in the IMFEXEC ALERT command, you must create and add the help panel to
BBPLIB. The HELP keyword specifies the name of the BBPLIB member name. The example shows an IMFEXEC
ALERT command statement that specifies a help panel named H8100. The example is a REXX statement and
therefore uses double quotation marks. The ALERT created by the EXEC appears on the ALERT DETAIL panel in
the following format:

TIME IND ORIGIN
11:44 h CHICAGO ALMO100 8100 COMMUNICATION LINE DOWN:
-CHI998A21

The ALERT displays with ah in the IND column. This indicates that there is a help panel associated with the
ALERT.

To access the help panel, place the cursor anywhere on the ALERT text and press the PF key assigned to EXPAND.

You can also type EXPAND on the command line and then place the cursor anywhere on the ALERT text and press
ENTER.

Chapter 12. Using the IMFEXEC Statemen253

ALERT

Example 3: Managing ALERT Queues

/* REXX */
"IMFEXEC VGET THRSHOLD"
"IMFEXEC ALERT FUNCTION(COUNT) QUEUE(NETWORK)'
N=AMFCOUNT
DO WHILE N > O
"IMFEXEC ALERT FUNCTION(READQ) QUEUE(NETWORK) POSITION(C"N™)"
IF IMFCC = O THEN DO
IF AMFUDATA > THRSHOLD THEN DO
"IMFEXEC ALERT "AMFKEY' FUNCTION(DELETE) QUEUE(NETWORK)"
"IMFEXEC ALERT "AMFKEY™ FUNCTION(ADD) ""AMFTEXT™" QUEUE(SUPERVSE)"
END
END
N=N-1
END

You can periodically check the queues for ALERTSs that have not been responded to and change their priority so that
they are noticed.

In the above EXEC, the READQ function is used to set AMFCOUNT equal to the number of ALERTS in the
Network queue. The EXEC then reads each ALERT from the NETWORK queue using POSITION and tests the user
data presented in the AMFUDATA variable.

If the criteria is met, the ALERT is deleted from the Network queue using the AMFKEY variable (the key of the
ALERT). Then the ALERT is added to the supervisor's queue using the same key and using the original text in the
AMFTEXT variable.

Note: This example assumes that the ALERTs were originally created with some meaningful user data (such as the
date and time).

Examples of ALERT Escalation

The following examples show how to create ALERTs with the ESCALATE parameter so that an ALERT can increase
or decrease in priority over a specified interval(s) of time.

Example 1. Escalating an ALERT from lowest to highest priority: The ALERT in this example will be
upgraded from Informational to Critical priority over five time intervals. The following list describes the properties of
the ALERT:

e The original priority of the ALERT is InformationaR10RITY (info)).
e The ALERT's priority will be upgradecécalate (up)).

e The priority will be upgraded gradually over the intervals of 10 minutes, 20 minutes, 30 minutes, 30 minutes, and
40 minutes [nterval (10,20,30,30,40)).

* When the ALERT reaches the final priority level, the ALERT should be deisgdse(delete)).

/* REXX */

"IMFEXEC ALERT keyl "test alert”™ Priority(info) Escalate(up)",
"Interval (10,20,30,30,40) Dispose(delete)™

254 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

ALERT

When the EXEC that schedules this ALERT is scheduled, the ALERT’s original priority is Informational. After 10
minutes (), the priority automatically is upgraded from Informational to Warning. The ALERT stays at the
Warning priority for 20 minutes () and is upgraded to Minor. The ALERT stays at Minor priority for 30 minutes
() before being upgraded to Major. It stays at Major priority for 30 minutes () before being upgraded to Critical.
After remaining at Critical for 40 minutes (), the ALERT is deleted.

Example 2: Downgrading ALERT priority over two intervals: The ALERT in this example will be
downgraded over two time intervals. The following list describes the properties of the ALERT:

e The original priority of the ALERT is MinoiPRIORITY (minor)).
e The ALERT’s priority will be downgradedécalate(down)).
e The priority will be downgraded over the intervals of 10 minutes and 20 minuiesrival (10,20)).

* When the ALERT reaches the final priority level, the ALERT should be deiepdse(delete)).

/* REXX */

"IMFEXEC ALERT key2 "test alert”™ Priority(minor) Escalate(down)",
"Interval (10,20) Dispose(delete)"

When the EXEC that schedules this ALERT is scheduled, the ALERT's original priority is Minor. After 10 minutes
(), the priority automatically is downgraded from Minor to Warning. The ALERT remains at the Warning priority
for 20 minutes () and is deleted at the end of the interval.

The intervals in this example also can be validly coded as follows:
Interval (10,20,)

or

Interval (10,20, ,)

or

Interval (10,20,,,,)

Example 3: Upgrading an ALERT and scheduling an escalation EXEC: The ALERT in this example
will be upgraded over two time intervals and, at the end of the second interval, an escalation EXEC will be scheduled.
The following list describes the properties of the ALERT:

e The original priority of the ALERT is MinoiPRIORITY (minor)).
e The ALERT’s priority will be upgradeccécalate(up)).
e The priority will be upgraded over the intervals of 10 minutes and 20 minutesrfval (10,20)).

* When the ALERT reaches the final priority level, the ALERT should be kept until it is manually deleted
(Dispose(keep)).

Chapter 12. Using the IMFEXEC Statemen255

ALERT

e When the ALERT completes its final interval, an EXEC named e100 with three parameters is scheduled
(Escexec("el00 pl p2 p3T)).

/* REXX */

"IMFEXEC ALERT key2 "test alert”™ Priority(minor) Escalate(up)",
"Interval (10,20) Dispose(keep) Escexec("el00 pl p2 p3®)"

When the EXEC that schedules this ALERT is scheduled, the ALERT's original priority is Minor. After 10 minutes
(), the priority automatically is upgraded from Minor to Major. The ALERT remains at the Major priority for 20
minutes () and the EXEC €100 with its three parameters is scheduled at the end of the interval. The ALERT
remains at the Major priority until it is manually deleted.

Example 4: Skipping ALERT priorities during ALERT escalation: The ALERT in this example will be
upgraded from Informational to Major while skipping the intermediate ALERT priorities. The following list
describes the properties of the ALERT:

e The original priority of the ALERT is Information€®RIORITY (info)).
e The ALERT’s priority will be upgradectécalate(up)).
e The priority will be upgraded over the two intervals of 10 and 20 minutes.

However, to skip ALERT priorities, you must specify an interval of zero minutes for each of the intervals you
want to skip.

In this example, the ALERT will skip two priorities and change from Informational priority directly to Major after a
10-minute interval [nterval (10,0,0,20)).

* When the ALERT reaches the final priority level, the ALERT should be kept until it is manually deleted
(Dispose(keep)).

e When the ALERT completes its final interval of 20 minutes, an EXEC named e100 with three parameters is
scheduledEscexec("el100 pl p2 p37)).

/* REXX */

"IMFEXEC ALERT key2 "test alert®™ Priority(info) Escalate(up)",
"Interval (10,0,0,20) Dispose(keep) Escexec("el00 pl p2 p3®)"

When the EXEC that schedules this ALERT is scheduled, the ALERT's original priority is Informational. After 10
minutes (), the ALERT’s priority automatically is upgraded from Informational to Major. To skip the intermediate
priorities, you must code zero minutes for both Warning and Minor priorities (and).

The ALERT remains at the Major priority for 20 minutes () and the EXEC e100 with its three parameters is
scheduled at the end of the interval. The ALERT remains at the Major priority until it is manually deleted.

256 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

ALERT

The intervals in this example also can be validly coded as:
Interval (10,0,0,20,)

or

Interval (10,0,0,20,,)

Example 5: Showing the elapsed time for an escalated ALERT The ALERT in this example will be
upgraded from Minor to Major in one 10-minute interval. The following list describes the properties of the ALERT:

e The original priority of the ALERT is MinoPRIORITY (minor)).

e The ALERT’s priority will be upgradectécalate(up)).

e The priority will be upgraded over one interval of 10 minutestérval (10)).

* When the ALERT reaches the final priority level, the ALERT should be deiegdse(delete)).

e When the ALERT completes its final interval, an EXEC named e100 with three parameters is scheduled
(Escexec("el00 pl p2 p3T)).

/* REXX */

"IMFEXEC ALERT key2 "test alert® Priority(minor) Escalate(up)"
"Interval (10,20) Dispose(delete) Escexec("el00 pl p2 p3°)"

The following example shows the life of the ALERT over time:

1:00pm 1:10pm 1:30pm
A Minor ALERT -——> The ALERT is upgraded -—> The ALERT is deleted
is created to Major Priority and the EXEC el00

is scheduled
The ALERT stays at this The ALERT stays at this
priority for 10 minutes priority for 20 minutes

Chapter 12. Using the IMFEXEC Statemen257

ALERT

Examples of Invalid Coding with the Interval Parameter

Some examples of invalid coding are:

Example 1. The interval keyword must contain at least one value.

"IMFEXEC ALERT key4 "test alert”™ Priority (info) Escalate(up) Interval(,)"

Example 2: You can only specify as many intervals as there are between an originating priority and the end priority.

"IMFEXEC ALERT key4 "test alert™ Priority(major) Escalate(up)
Interval (10,10,10)"

In this example, there is only one priority that a major ALERT can be upgraded to (Critical) and yet three intervals are
specified.

Example 3: The interval keyword cannot have null values for intervals.

"IMFEXEC ALERT key4 “test alert® Priority(major) Escalate(up)
Interval(,10,10)"

or

"IMFEXEC ALERT key4 "test alert® Priority(info) Escalate(up)
Interval (,10,,20)"

Example 4: The intervals cannot have negative values.

IMFEXEC ALERT key4 "test alert” Priority(info) Escalate(up) Interval(,10,-20)
Examples of the PUBLISH Keyword
The following examples demonstrate the usage of the IMFEXEC ALERT PUBLISH keyword.

Example 1: This example creates an ALERT and publishes it to all connected PATROL Enterprise Manager
workstations, deleting any ALERTSs already present with the same queue name and key.

IMFEXEC ALERT TESTKEY “THIS IS A TEST> FUNCTION(CADD) PUBLISH(REPLACE) QUEUE(TEST AREA)

Example 2: This example creates an ALERT but does not publish it to any connected PATROL Enterprise Manager
workstation.

IMFEXEC ALERT TESTKEY <“DO NOT PUBLISH ME” FUNCTIONCADD) PUBLISH(NO) QUEUE(MAIN)

258 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

BKPT

BKPT

Use this command anywhere in an EXEC when you want to set a breakpoint. The breakpoint marks where the EXEC
will stop while it is being executed by the online EXEC Testing facility. If you execute the EXEC outside of the
online EXEC Testing facility, this command has no effect.

You can use this statement in native REXX code.

Command Parameters

BKPT

This command has no parameters. Use of this command has no effect on the value of variable IMFCC.

Chapter 12. Using the IMFEXEC Statemen259

CHAP

CHAP

This command uses a specified numeric parameter to change the dispatching priority of the EXEC either up or down.

Command Parameters

CHAP (n)

The following table describes the parameters.

Parameter Function Notes

o1

n A numerical value that changes the The numerical value can range from -25
dispatching priority (either up or down) gf to 255. After the EXEC terminates, the
the EXEC. The value you specify is addgdnew dispatching value is returned in the

to the current dispatching priority. variable IMFPRIO. The value of
IMFPRIO can be from 0 to 255.

Condition codes are listed in the following table.

Value Description
16 Syntax error
Example

This example shows IMFEXEC CHAP where the specified value (-10) will be added to the current dispatching
priority.

IMFEXEC CHAP(-10)

Specifying a value of zero (0) returns the current priority.

260 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

CICS

CICS

The IMFEXEC CICS command statements use additional commands to manage and control CICS resources.

An IMFEXEC CICS command statement consists of the keyword IMFEXEC, the command prefix CICS, and an
AutoOPERATOR or MAINVIEW for CICS command with additional parameters. You can specify resources with
generic (*) and positional (+) wild card characters, except when noted. Note that when you use a generic in some
resource names, a maximum of only 200 discrete commands are executed. See each command for which ones are
affected by this limitation.

CICS requests only indicate success or failure of the scheduling of the service. The AutoOPERATOR for CICS
component within the CICS address space issues additional messages to indicate its success or failure. You should
code Rule-initiated EXECs (triggered by journal messages in the format FTxxx) to process the responses from CICS
to ensure successful completion of CICS-dependent commands.

The IMFEXEC CICS commands are supported only on a CICS system that is defined to the local AutoOPERATOR
BBI-SS PAS. If a CICS target is used (refer to IMFEXEC SETTGT command on page 359) that is defined to a
remote AutoOPERATOR BBI-SS PAS, you will receive a FT421S message and the service will fail.

To avoid this, use the IMFEXEC SELECT command to schedule an EXEC on a remote AutoOPERATOR BBI-SS
PAS and that EXEC can issue the CICS command.

Condition Codes

The following table describes condition codes returned after issuing an IMFEXEC CICS command statement.

Value Meaning

0 Normal completion

4 Warning condition; not necessarily an error

8 Exceptional condition

12 Error condition; did not complete operation. Possible reasons are:

« For independent actions, the region was not available

« For dependent functions, the region was not connected to the BBI-SS PAS

16 Error condition

20 Severe error condition

The IMFCC variable can be tested by commands in the EXEC that follow the IMFEXEC command. However, the
IMFCC condition code is different for services that are dependent or services that are independent of CICS.

For CICS-dependent services (where CICS performs the task), the request is routed to the respective CICS system for
processing. If the request is successfully scheduled, IMFCC is set to O; if the request fails, IMFCC is set to 8. Either
message FT0371 or FTO38W is written to the Journal log at this time. The final status of the service is written to the
Journal log by messages FT401 through FT414. These messages are accompanied with explanatory text. CEMT is an
exception; CEMT returns the actual CICS response to the log instead of issuing FTxxxx messages.

Chapter 12. Using the IMFEXEC Statemen261

CICS

For CICS-independent services (services that do not require CICS to perform the task), a Service Request Block
(SRB) is scheduled to the target CICS system to perform the processing. If the request is successfully scheduled,
IMFCC is set to O; if the request fails, IMFCC is set to 8. Either message FT0371 or FTO38W is written to the Journal
log at this time. The final status of the service is written to the Journal log by messages FT401 or FT414. These
messages are accompanied with explanatory text.

See Table 10 for details on which services are CICS dependent and which are not.

262 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

CICS

CICS Command Parameters

Services marked as dependent require that BBI-SS PAS to CICS communication is active. ReféAtNHEW
AutoOPERATOR Customization Guide details.

Table 10. List of IMFEXEC CICS Command Statements

Command Function Dependent Page
ACQUIRE Acquire a VTAM-supported terminal Yes 263
ALLOC Allocate a data set Yes 266
ALTER Alter a CICS task-related value Yes 267
ALTERVS Alter virtual storage No 273
CEMT Issue a CICS extended master terminal command Yes 274
CHAP Change a task’s priority Yes 275
CICSKEY Change CICSKEY settings for CIS transactions No 276
CLOSE Close afile Yes 277
CONN Alters the status of IRC/ISC connections Yes 278
DISABLE Disable a resource Mixed! 279
DROP Decrease the use count of a program Yes 281
DUMPDB Prepare a database for dumping Yes 282
ENABLE Enable a resource Mixed! 283
FREE Deallocate a file Yes 285
INSERVE Place a resource in service Yes 286
ISOLATE Change ISOLATE settings for CIS transactions No 287
KILL TASK Terminate a CICS task by task number Mixed! 288
KILL TERM Terminate a CICS task by terminal Yes 290
LOAD Load a program Yes 291
NEWCOPY Load a new version of program Yes 292
OPEN Open afile Yes 293
OUTSERVE Take a resource out of service Yes 294
PURGE Purge a resource Yes 295
QUERY Invoke a MAINVIEW for CICS service No 297
RECOVERDB Prepare a database for recovery Yes 299
RELEASE Release a VTAM terminal Yes 300
TERMINAL

Chapter 12. Using the IMFEXEC Statemen263

CICS

Table 10. List of IMFEXEC CICS Command Statements (Continued)

Command Function Dependent Page
SPURGE Change the SPURGE value for a CICS transaction No 301
STARTDB Start a database Yes 302
STOPDB Stop a database Yes 303

1 Some common options are dependent. Refer to the description of each command for more information.

264 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

CICS ACQUIRE

CICS ACQUIRE

This command issues a VTAM request to acquire a terminal.

Command

Parameters

CICS ACQUIRE

TERMINAL
Terminal identifier

The following table describes the parameters.

Parameter

Function

Notes

Terminal

The terminal to be acquired

1- to 4-alphanumeric.

If you use generics for the terminal ID name,
a maximum of only 200 discrete commands
are executed.

Note: BBI-SS PAS to CICS communication must be active.

Example

The commands in this example acquire terminals following CICS startup without needing to specify
CONNECT=AUTO in the Terminal Control Table (TCT). WAIT was specified to minimize the impact on CICS

processing.

/* REXX */

"IMFEXEC CICS
"IMFEXEC CICS
"IMFEXEC CICS
"IMFEXEC CICS

"IMFEXEC WAIT
"IMFEXEC CICS
"IMFEXEC CICS

ACQUIRE TERMINAL ABOO™
ACQUIRE TERMINAL ABO1"
ACQUIRE TERMINAL ACOO"
ACQUIRE TERMINAL ACO1"

5
ACQUIRE TERMINAL BA11"
ACQUIRE TERMINAL BA12"

Chapter 12. Using the IMFEXEC Statemen265

CICS ALLOC

CICS ALLOC

This command allocates a file or data set to either the CICS region or to the BBI-SS PAS. The allocation is done
shared (DISP=SHR).

Command Parameters

CICS ALLOC Filename
[TO]
Dsname
[LOCAL]

The following table describes the parameters.

Parameter Function Notes

Filename The DD Name of the file to allocate Length can be 1- to 8 alphanumeric.

An FCT entry is not needed.

TO Readability token
DSName Name of data set to allocate 1-44 characters alphanumeric.
LOCAL Forces allocation to the BBI-SS PAS

instead of the CICS region

Example

This example command allocates a data set that has previously been freed for batch processing.

/* REXX */
"IMFEXEC CICS ALLOC MASTER TO USER.VSAM._MASTER™

266 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

CICS ALTER

CICS ALTER

This command allows changing of the values of the CICS class maximum settings and statistics for each class.

Note: For CICS/ESA 4 and above, BBI-SS PAS to CICS communication must be active

Command Parameters

CICS ALTER MAXTASK | ICV | ICVR | CLASSN | TCLASS | SYSTEM | DUMPDS | TCPIPSERVICE
JVMPOOL

The following table describes the parameters.

Parameter Function Notes

MAXTASK Specifies the maximum number of Values can be 1 - 999.
tasks, active and suspended, allowed in
the CICS address space concurrently.

Example:

"IMFEXEC CICS ALTER MAXTASK
35"

/* Allow only 35 tasks to
run */

ICV Specifies the region exit interval valug Values can be 100 - 3600000.
in milliseconds.

Example:

"IMFEXEC CICS ALTER ICV 1000"
/*Come back from 0OS after 1
second*/

ICVR Specifies the runaway interval in Values can be 500 - 2700000.
milliseconds.

Example:

"IMFEXEC CICS ALTER ICVR 5000"
/* IT i1t runs longer than 5
seconds, it is looping */

CLASS1-CLASS10| Specifies the largest number of tasks Walues can be 1 - 999.
this class that can be active
concurrently.

Example:
"IMFEXEC CICS ALTER CLASS1 10*

/* Allow only 10 tasks in this
class */

Chapter 12. Using the IMFEXEC Statemen267

CICS ALTER

Parameter

Function

Notes

TCLASS class

MAXACTIVE value
| PURGETHRESH
value

Reset the maximum number of tasks
the purge threshold for a transaction
class.

Example 1:

"IMFEXEC CICS ALTER TCLASS
DFHTCLO5 MAXACTIVE 200"

/* Only allow 200 tasks to
run */

Example 2:

"IMFEXEC CICS ALTER TCLASS

DFHTCLO5 PURGETHRESH 1000

/* Only allow 1000 tasks to
queue up */

brPossible attributes and values are

Class
Any valid 1 - 8 character transaction
class name. The word class is not a
keyword. It indicates where the
positional parameter class name is
specified.

MAXACTIVE Value
Valid values can be 0 - 999. Cannqt
be specified with PURGETHRESH
After the value for class, specify
MAXACTIVE followed by a value.

PURGETHRESH Value
Valid values can be 0 - 1000000.
Cannot be specified with
MAXACTIVE. After the value for
class, specify PURGETHRESH
followed by a value. Only one
attribute can be changed per
execution of the statement. You
cannot change both the
MAXACTIVE and the
PURGETHRESH attribute with the
same statement.

ALTER TCLASS is only available for CTS
1.3 and later.

268 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

CICS ALTER

Parameter

Function

Notes

SYSTEM attribute
value

Possible attributes
are

AKP
DSALIMIT
DTRPROGRAM
DUMPING
EDSALIMIT
FORCEQR
PROGAUTOINST
PROGAUTOCTLG
PROGAUTOEXIT
PRTYAGING
RUNAWAY
SCANDELAY
TIME

Issues commands to change certain
CICS system attributes. Attribute
specifies the system attribute and val
is the desired value.

Example 1:

"IMFEXEC CICS ALTER SYSTEM
DUMPING NO"

/* This command disallows
dumps */

Example 2:

"IMFEXEC CICS ALTER SYSTEM
DSALIMIT 8388608"

/* Set DSA limit to 8
megabytes*/

Example 3:

"IMFEXEC CICS ALTER SYSTEM
EDSALIMIT 500M"

/* Set EDSA limit to 500
megabytes */

Example 4:

"IMFEXEC CICS ALTER SYSTEM
EDSALIMIT 1G™

/* Set EDSA limit to 1
gigabytes */

Possible attributes and values are

LAKP
Valid range is 200 - 65535. Specifig
the activity keypoint trigger value,
which is the number of write
requests to the CICS system log
stream output buffer between the
keypoints. The value 0 is also valid
and specifying it turns off keypoints

)

DSALIMIT
Valid values are 2MB - 16MB.
Specifies the maximum amount of
dynamic storage area CICS can
allocate below the 16 megabyte line|.
Values can be specified in bytes,
kbytes or mbytes by appending K g
M to the end of the value, or by
leaving a blank for bytes.

=

DTRPROGRAM
Specifies the Dynamic Routing
program name.

DUMPING
Valid values are YES and NO.
Indicates whether CICS system
dumps can be taken.

EDSALIMIT

Valid values are 10M - 2G. Specifie
the maximum amount of dynamic
storage area CICS can allocate
above the 16 megabyte line. Valugs
can be specified in bytes, kbytes,
mbytes or gbytes by appending K,
M or G to the end of the value, or by
leaving blank for bytes.

1*2)

FORCEQR
Valid values are FORCE and
NOFORCE. Specifies whether you
want CICS to force all user
application programs specified as
CONCURRENCY(THREAD-
SAFE) to run under the CICS QR
TCB, as if they were specified as
CONCURRENCY(QUASIRENT)
programs. SYSTEM FORCEQR is
available only for CTS 1.3 and later.

Chapter 12. Using the IMFEXEC Statemen269

CICS ALTER

Parameter

Function

Notes

SYSTEM attribute
value

(Continued)

See theCICS System Programming
Reference Guid®r more information.

PROGAUTOINST
Valid values are ACTIVE and
INACTIVE. Specifies whether
autoinstall for programs is to be active ¢
inactive.

=

PROGAUTOCTLG
Valid values are NONE, ALL or
MODIFY. Specifies which autoinstalled
program definitions are to be cataloged
and when. Definitions are to be cataloged
only when modified.

PROGAUTOEXIT
Specifies the name of the user-provide
program to be called by the CICS
program autoinstall code to provide a
model definition.

o

PRTYAGING
Valid values are between 0 and 65535 (jn
milliseconds). Specifies the rate at whig
CICS is to increase the priority of a tas
waiting for dispatch.

=3

RUNAWAY
Valid values are between 500 and
2700000 (in milleseconds). Specifies the
default for runaway task time.

SCANDELAY
Valid values are 0 to 5000 (in
milliseconds). Specifies the maximum
number of milliseconds between a usef
task making a terminal 1/O request and
CICS dispatching the terminal control
task to process it.

TIME
Valid values are in the range 100 -
3600000. Specifies the maximum
interval in milliseconds for which CICS
gives control to the operating system if
no tasks are ready for dispatch. Only one
attribute can be changed per execution|of
the statement. You will need to code
multiple statements in order to change
multiple attributes.

270 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

CICS ALTER

Parameter

Function

Notes

DUMPDS attribute
value

Possible attributes
are

DATASET
INITIALDDS
OPENSTATUS
SWITCHSTATUS

Changes the attributes of the CICS
dump data set.

Example 1:

"IMFEXEC CICS ALTER DUMPDS
OPENSTATUS OPEN"

/* This command opens the
active dump dataset */

Example 2:

"IMFEXEC CICS ALTER DUMPDS
INITIALDDS AUTO™

/* Next warm start use
whichever dataset not used
last */

Possible attributes and values are

DATASET
Valid values are A and B. Specifies
current dump data set.

INITIALDDS
Specifies which dump data set is to be
active first on subsequent warm or
emergency restarts. Valid values are A,
and AUTO. AUTO indicates to use the

data set that was not active when CIC$
last terminated (normally or abnormally)).

OPENSTATUS
Valid values are OPEN and CLOSE.
Specifies actions to be taken on the
transaction dump data sets.

SWITCHSTATUS
Valid values are NO and NEXT.
Specifies whether CICS is to switch
active data sets automatically the next

B

D

time the current dump data set fills up.

Chapter 12. Using the IMFEXEC Statemen271

CICS ALTER

Parameter

Function

Notes

TCPIPSERVICE
service attribute
value

Possible attributes
are

BACKLOG
DNSSTATUS
STATUS
URM

Modify the status of a service using
CICS internal TCP/IP support.

Example 1:

"IMFEXEC CICS ALTER
TCPIPSERVICE PRINTER STATUS
CLOSE™
/* Close printer service */

Possible attributes and values are

BACKLOG
Changes the maximum number of
requests that can be queued in TCP/IR
waiting to be processed by the service
Specify service name followed by
BACKLOG followed by value.

DNSSTATUS
Valid values are REGISTERED and
DEREGISTERED. Changes the Doma

Name System (DNS)/Workload Manage
(WLM) registration status of this service.

Specify service name followed by
DNSSTATUS followed by value.

STATUS
Valid values are OPEN, CLOSE and
IMMCLOSE. Changes the status of the
service. Specify service name followed
by STATUS followed by value.

URM
Specifies the 8-character name of the
program to be used as the Service
User-replaceable module. Specify
service name followed by URM followed
by value.

ALTER TCPIPSERVICE is only available for
CTS 1.3 and later.

124
-

JVMPOOL attribute
value

Possible attributes
are

Enable or disable the JVM pool, or
terminate the pool altogether.

Example 1:

Possible attributes and values are

STATUS
Valid values are ENABLED and
DISABLED. Specifies whether new Jav,

by

"IMFEXEC CICS ALTER JVMPOOL requests can be accepted and serviced
STATUS STATUS DISABLED" the JVM pool.
TERMINATE /* No new requests are
allowed >/ TERMINATE
_ Valid values are PHASEOUT, PURGE
Example 2: and FORCEPUR. Specifies that the JV
pool is to be terminated.
"IMFEXEC CICS ALTER JVMPOOL
TERMINATE PURGE™ . .
/*Purge all the tasks */ ALTER JVMPOOL is only available for CTS
2.1 and later.
Example

Examples are located in the Parameters table with the description of each keyword.

272 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

CICS ALTERVS

CICS ALTERVS

This command allows changing of the contents of memory located at the specified virtual address.

Command Parameters

CICS ALTERVS Address
[FROM]
Valuel
[TO]
Value2

The following table describes the parameters.

Parameter Function Notes
Address A virtual storage address 8 hexadecimal digits (4 bytes).
FROM Readability token Used primarily for documentation

purposes; however, it must be different

from the TO value to cause the storage to
be altered.
Valuel Current memory contents at the designate8l hexadecimal digits.
virtual storage address
TO Readability token
Value2 Replaces the current contents of memory & hexadecimal digits (4 bytes).

the specified virtual storage address with a
new hexadecimal value

Example

This example command zeroes out a field known to be in a specific location in a control block or program.

/* REXX */
"IMFEXEC CICS ALTERVS 00031F14 FROM 01080000 TO 00000000

Chapter 12. Using the IMFEXEC Statemen273

CICS CEMT

CICS CEMT

This command issues a CICS CEMT request.

Command Parameters

CICS CEMT | CEMTQ Mttran

The maximum length of parameters (including blanks) and subcommands (such as
SET and INQUIRE) is 72 characters.

By default, the output from the CEMT command is written to the BBI journal/ If
you many CEMT commands consecutively or over time, it can produce a great
deal of unwanted data in the BBI journal. To avoid this overload of informatign,
you can use the CEMTQ command instead of CEMT. All parameters are specified
exactly as with CEMT. The difference is that the output will not be written to the

BBI journal.

Note: BBI-SS PAS to CICS communication must be active.

The following table describes the parameters.

Parameter Function Notes

Mttran Is a CICS master terminal command The command can be issued using the
initiated from an EXEC as a CEMT requestMVS command facility (CMD) if the
console used is defined to CICS in the
CICS Terminal Control Table.

Example

This example command switches dump data sets.

/* REXX */
"IMFEXEC CICS CEMT SET DUMP SwI™

.or

/* REXX */
"IMFEXEC CICS CEMTQ SET DUMP SwI**

274 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

CICS CHAP

CICS CHAP

This command causes a dynamic change to the priority of an active task.

Command Parameters
CICS CHAP Taskno
Priority

Note: BBI-SS PAS to CICS communication must be active.

The following table describes the parameters.

Parameter

Function

Notes

Taskno

Number of the currently active task to
modify

D

Decimal numeric value in CICS allowabl¢
range.

This number can be obtained by using the
IMFEXEC QUERY command (this
requires MAINVIEW for CICS to be
installed). Looping transactions running at
a dispatching priority of 255 sometimes
cannot be changed.

New priority

The priority to assign to this task

Numeric value in the range 0-255.

Example

This example command assigns a dispatching priority of 232 to task 8756.

/* REXX */

"IMFEXEC CICS CHAP 8756 232"

Chapter 12. Using the IMFEXEC Statemen275

CICS CICSKEY

CICS CICSKEY

This command changes CICSKEY settings for CICS transactions.

Command Parameters

CICS CICSKEY Tran ID .br;[YES|NO]

The following table describes the parameters.

Parameter Function Notes
Tran ID The name of a CICS transaction
[YES|NO] Can be setto YES or NO

Example

This section contains examples using the IMFEXEC CICS CICSKEY command statement. A brief discussion
follows each example.

Example 1

"IMFEXEC CICS CICSKEY CEMT YES"

This example command sets the TASKDATAKEY of the CICS CEMT to CICS.

Example 2

"IMFEXEC CICS CICSKEY CEMT NO™

This example command sets the TASKDATAKEY of the CICS CEMT to USER.

276 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

CICS CLOSE

This command closes one file in the CICS region.

CICS CLOSE

Command

Parameters

CICS CLOSE

Filename

Note: BBI-SS PAS to CICS communication must be active.

The following table describes the parameters.

Parameter Function Notes
Filename The filename of the file to close 1- to 8-alphanumeric file name defingd in
the CICS File Control Table (FCT).
Example

This example command closes a CICS file.

/* REXX */

"IMFEXEC CICS CLOSE POO1"

Chapter 12. Using the IMFEXEC Statemenf277

CICS CONN

CICS CONN

This command alters the status of IRC/ISC connections.

Command Parameters

CICS CONN SYSID

IN
ouT
ACQ

REL
NOTPEND
PURGE

Note: BBI-SS PAS to CICS communication must be active.

The following table describes the parameters.

Parameter Function

Notes

SYSID Is the CICS SYSID for the MRO/ISC
connection

Values can be:

INservice
Puts the connection into service

OUTservice
Takes the connection out of service

ACQuire
Acquires a connection

RELease
Releases a connection

NOTPEND
Makes a connection not pending

PURGE
Purges a connection

Example

This example command puts a connection in service.

"IMFEXEC CICS CONN SYSID IN"

278 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

CICS DISABLE

CICS DISABLE

This command command makes a resource unavailable to applications, except for those currently using it.

Command

Parameters

CICS DISABLE

FILE]TRAN|PROGRAMI|DEST
Identifier

The following table describes the parameters.

Parameter

Function

Notes

Type

The type of resource to affect

Values are:

FILE
A file

Note:BBI-SS PAS to CICS
communication must be active.

TRAN
A CICS transaction

PROGRAM
A CICS application program

DEST
A transient data queue

Identifier

The resource ID for each type

Values are:

file id
Identifier is a 1- to 8-alphanumeric filg
name

tran id
Identifier is a 1- to 4-alphanumeric
transaction name

program id
Identifier is a 1- to 8-alphanumeric
program name

destid
Identifier is a 1- to 4-character queus
name defined in the Destination
Control Table (DCT)

Chapter 12. Using the IMFEXEC Statemen279

CICS DISABLE

Example

This example command disables a CICS transaction.

/* REXX */
"IMFEXEC CICS DISABLE TRAN ABRW™

280 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

CICS DROP

This command decreases the use-count of a program.

CICS DROP

Command

Parameters

CICS DROP

Program name

Note: BBI-SS PAS to CICS communication must be active.

The following table describes the parameters.

Parameter

Function

Notes

Identifier

A CICS program identifier

1- to 8-character ID of the program
affected. After a program use-count
reaches 0, it is eligible to be removed by
CICS program compression. You should be
careful to avoid dropping, and potentially
removing, programs that are actually in use
by executing transactions.

Example

This example command decreases the use-count of the program DSPFILE.

/* REXX */

"IMFEXEC CICS DROP DSPFILE™

Chapter 12. Using the IMFEXEC Statemen281

CICS DUMPDB

CICS DUMPDB

This command prepares a database for dumping by preventing updates so a backup job can be run in another region.

Command Parameters

CICS DUMPDB Database name

Note: BBI-SS PAS to CICS communication must be active.

The following table describes the parameters.

Parameter Function Notes

Database Database identified in the Data 1- to 8-character name of the database.
Management Block Directory (DMB)

Example

This example command prepares the database STD2XCP for batch updates.

/* REXX */
"IMFEXEC CICS DUMPDB STDCX2P*

282 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

CICS ENABLE

This command makes a resource available for use.

CICS ENABLE

Command Parameters
CICS ENABLE FILE]TRAN|PROGRAM|DEST
Identifier

The following table describes the parameters.

Parameter Function

Notes

Type The type of resource to affect

Values are:

FILE
A file

Note:BBI-SS PAS to CICS

TRAN
A CICS transaction

PROGRAM
A CICS application program

DEST
A transient data queue

communication must be active.

Identifier The resource ID for each type

Values are:

file id
Identifier is a 1- to 8-alphanumeric filg
name

tran id
Identifier is a 1- to 4-alphanumeric
transaction name

program id
Identifier is a 1- to 8-alphanumeric
program name

destid
Identifier is a 1- to 4-character queus
name defined in the Destination

h

Chapter 12. Using the IMFEXEC Statemen283

CICS ENABLE

Example

This example command enables the CICS transaction ABRW.

/* REXX */
"IMFEXEC CICS ENABLE TRAN ABRW™"

284 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

CICS FREE

CICS FREE

This command deallocates a file from the CICS region or BBI-SS PAS.

Command Parameters
CICS FREE Filename
[LOCAL]

Note: BBI-SS PAS to CICS communication must be active.

The following table describes the parameters.

Parameter Function Notes

Filename The DD Name of the file to deallocate 1- to 8 alphanumeric.

DISABLE FILE and CLOSE commands
for the data set must be issued before

FREE. The name does not need to be one
that is specified in the CICS FCT, but the
file must be closed to be freed.

LOCAL Forces deallocation from the BBI-SS PAS
instead of the CICS region

Example

These example commands close and deallocate a data set.

/* REXX */
"IMFEXEC CICS CLOSE MASTER™
"IMFEXEC CICS FREE MASTER"

Chapter 12. Using the IMFEXEC Statemen285

CICS INSERVE

CICS INSERVE

This command puts a terminal, line, or control unit in service.

Command Parameters
CICS INSERVE TERMINAL|LINE|[CONTROLLER
Identifier
Note: BBI-SS PAS to CICS communication must be active.

The following table describes the parameters.

Parameter

Function

Notes

Type

The type of resource to modify

One of the following:
TERMINAL
LINE
CONTROLLER
If you use generics for the terminal ID

name, a maximum of only 200 discrete
commands are executed.

Identifier

ID of the terminal, line, or controller

1-4 characters.

The ID of a line or a controller cannot be
specified as a generic.

Example

This example command makes all terminals with IDs that begin with SC available for use.

/* REXX */
"IMFEXEC CICS

INSERVE TERMINAL SC**

286 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

CICS ISOLATE

CICS ISOLATE

This command changes ISOLATE settings for CICS transactions.

Command Parameters
CICS ISOLATE Tran ID
[YES|NO]

The following table describes the parameters.

Parameter Function Notes
Tran ID The name of a CICS transaction
[YES|NO] Can be setto YES or NO

Example

This section contains examples using the IMFEXEC CICS ISOLATE command statement. A brief discussion follows
each example.

Example 1

"IMFEXEC CICS ISOLATE CEMT YES"

This example command sets CICS CEMT to ISOLATE(YES).

Example 2

"IMFEXEC CICS ISOLATE CEMT NO™

This example command sets CICS CEMT to ISOLATE(no).

Chapter 12. Using the IMFEXEC Statemen287

CICS KILL
CICS KILL

This command terminates a CICS task identified by a CICS task number or identified by the CICS terminal it is
attached to.

Note: When this command is used on a task running in a CICS/ESA region, the task's system purgeable mask is
turned on (SPURGE set to YES) prior to execution of the command.

Command Parameters

CICS KILL TASK

Task number

[WITH DUMP]
[FORCE|PURGE|FORCEPURGE]

TERMINAL
Terminal ID
[PURGE|FORCEPURGE]

The table describing the IMFEXEC CICS KILL TASK command statement parameters is on page 288 and the table
describing the IMFEXEC CICS KILL TERM command statement parameters is on page 290.

CICS KILL TASK

The following table describes the parameters for the IMFEXEC CICS KILL TASK command statement.

Parameter Function Notes
Task number The number of the task affected A CICS-assigned task number from [L to
99999.

288 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

CICS KILL

Parameter Function Notes

WITH Readability token The WITH parameter works only with
DUMP.

Type Type of abnormal termination desired One of the following:
DUMP

If the integrity of the CICS region can
be maintained, the task is abnormally
ended with a dump.

FORCE
Forces a looping task to abend with p
dump, regardless of integrity
exposure. Expect to use this servicg
more than once on a multiprocessor
for a task in a loop. CAUTION: This
can cause the CICS region to abend.

PURGE
Purges a task using the services of the
CICS supplied transaction CEMT.

FORCEPURGE
PURGE a task using the services of
the CICS supplied transaction CEMT
using the FORCE parameter.

Note: BBI-SS PAS to CICS
communicatiomimust be active
to use the PURGE and
FORCEPURGE parameters.

If only the task number is specified, the
task is abnormally terminated if the
integrity if the CICS region can be
maintained. A dump is produced.

Chapter 12. Using the IMFEXEC Statemen289

CICS KILL

CICS KILL TERM

The following table describes the parameters for the IMFEXEC CICS KILL TERM command statement.

Note: BBI-SS PAS to CICS communicationust be active.

Parameter Function Notes

Terminal ID The terminal that the task is attached to

Type Type of abnormal termination desired One of the following:
PURGE

Purges a task using the services of the
CICS supplied transaction CEMT.

FORCEPURGE
PURGE a task using the services of
the CICS supplied transaction CEMT
using the FORCE parameter.

Examples

This section contains an example using the IMFEXEC CICS KILL TASK and IMFEXEC CICS KILL TERM
command statements. A brief discussion follows the example.

Example 1 - IMFEXEC CICS KILL TASK

/* REXX */
"IMFEXEC CICS KILL TASK 0004

When coded within an EXEC driven off the message FT041S, this command kills a task when the message:
FTO41S TRAN xxx TASK yyyy USING zzzK BYTES
is logged to the online Journal. The task ID is contained in the PO04 variable.

Example 2 - IMFEXEC CICS KILL TERM

/* REXX */
"IMFEXEC CICS KILL TERM BSA4"

This example terminates the CICS task attached to terminal BSA4.

290 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

CICS LOAD

This command increases the use-count of a program.

CICS LOAD

Command

Parameters

CICS LOAD

Program name

Note: BBI-SS PAS to CICS communication must be active.

The following table describes the parameters.

Parameter

Function

Notes

Identifier

The name of the affected program

1- to 8-character alphanumeric. If a
program is not currently resident in CICS
storage, it will be loaded. Unless the use
count is specifically decreased with the
DROP transaction or through CICS
services, the program stays permanently
loaded until CICS terminates.

Example

This example command increases the use count of the program named PROGX470.

/* REXX */

"IMFEXEC CICS LOAD PROGX470"

Chapter 12. Using the IMFEXEC Statemen291

CICS NEWCOPY

CICS NEWCOPY

This command marks the program name in the PPT nonresident and refreshes its disk address to prepare for a newly
link-edited version or restoration of that program.

Command Parameters

CICS NEWCOPY Program name

Note: BBI-SS PAS to CICS communication must be active.

The following table describes the parameters.

Parameter Function Notes
Program The program to refresh 1- to 8 alphanumeric.
Example

This example command refreshes the CICS copy of a program named PGM1.

/* REXX */
"IMFEXEC CICS NEWCOPY PGM1™

292 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

CICS OPEN

This command opens a file in the CICS region.

CICS OPEN

Command

Parameters

CICS OPEN

File name

Note: BBI-SS PAS to CICS communication must be active.

The following table describes the parameters.

Parameter Function Notes
Filename The name of the FCT entry to open 1- to 8 characters alphanumeric file name.
Example

These example commands allocate and open a data set.

/* REXX */

"IMFEXEC CICS ALLOC MAIN1 TO USERV.MAIN1.CLUSTER"

"IMFEXEC CICS OPEN MAIN1"

Chapter 12. Using the IMFEXEC Statemen293

CICS OUTSERVE

CICS OUTSERVE

This command takes a terminal, line, or control unit out of service.

Command

Parameters

CICS OUTSERVE

TERMINAL|LINE|CONTROLLER
Identifier

Note:

BBI-SS PAS to CICS communication must be active.

The following table describes the parameters.

Parameter

Function

Notes

Type

The type of resource to modify

One of the following:
TERMINAL
LINE
CONTROLLER
If you use generics for the terminal ID

name, a maximum of only 200 discrete
commands are executed.

Identifier

ID of the terminal, line, or controller

1-4 characters.

The ID of a line or a controller cannot be
specified as a generic.

Example

This example command keeps all terminals with IDs that begin with T and end with S from being used.

/* REXX */

"IMFEXEC CICS OUTSERVE TERMINAL T++S'

294 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

CICS PURGE

This command terminates a CICS resource

CICS PURGE

Command

Parameters

CICS PURGE

TSUT|ICE|DESTJAID

BBI-SS PAS to CICS communication must be active.

The following table describes the parameters.

Parameter

Function

Notes

TSUT value or
value HEX

Purges a temporary storage unit from the

CICS system.

Can be up to 16 characters or a 32 charag
representation of a 16-byte hexadecimal
number.

The maximum depends on the CICS
release.

Example 1:

"IMFEXEC CICS PURGE TSUT
PAYROLL1™

Example 2:

"IMFEXEC CICS PURGE TSUT 1C3A773B
HEX"

/* Purge the binary TSUT with
binary 1D 1C3A773B */

ter

ICE value

Purges an interval control element from |
CICS system.

h€an be up to 8 characters or a 16 charag
representation of an 8-byte hexadecimal
number.

Example 1:

"IMFEXEC CICS PURGE ICE DELAY"
Example 2:

"IMFEXEC CICS PURGE
3CO000FF00001000””

/* Purge the binary ICE with
binary 1D 3CO000FF00001000 */

ICE

ter

Chapter 12. Using the IMFEXEC Statemen295

CICS PURGE

Parameter

Function

Notes

DEST value

Deletes the CICS Transient Data queue

Up to 4 character queue name allov

Example:
"IMFEXEC CICS PURGE DEST DEVL™ /*
Delete the development queue */

ed.

AID value termed

Purges an Automatic Initiation Descriptd
from the CICS system.

rCan be up to 8 characters or a 16 charag
representation of an 8-byte hexadecimal
number.

Example:

"IMFEXEC CICS PURGE AID
3CO000FF00001000 L287 TRN1™
/* Purge the AID for terminal
L287 transaction TRN1 */

ter

Example

Examples are located in the Parameters table with the description of each keyword.

296 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

CICS QUERY

CICS QUERY

This command invokes MAINVIEW for CICS interactive services, such as SUMMARY, MONITOR, PROBLEM,
SUBPOOL, and so on.

Command Parameters

CICS QUERY Command

QUERY is executed on behalf of the target CICS system. When QUERY is used, data normally sent to the terminal is
written into variables that the EXEC can analyze. The output returned from the command is written into the LOCAL
variables LINE1 through LINExx, which correspond to the lines of the screen image.

The variable IMFNOL contains the number of lines of output. These variables need to be retrieved using the VGET
statement before they can be used.

The output is similar to output produced through the same service of a MAINVIEW for CICS terminal session, but
this output does not have screen attributes in the variables. The data returned also does not contain the first two lines
displayed when invoking the service under the BBI-TS. The data returned does not contain the header lines which are
displayed when invoking the service under the BBI-TS unless they contain variable data.

You might need to experiment with the correct offsets to use when substringing particular items. Changes to
MAINVIEW for CICS display formats might affect EXECs that process this data.

For most MAINVIEW for CICS services, two header lines are omitted before the data is returned in the LOCAL
variables. There are some exceptions to this standard.

One exception is those services that contain variable data in one of the header lines. For these services, the header line
containing the variable data and all subsequent lines are returned.

Another exception is those services which contain either one or two blank header lines. For these services, the header
lines are not returned at all. However, all blanks that might be interspersed within the detail lines of a specific display
are passed to the EXEC. You must accommodate for these lines in the EXEC.

The following table describes the parameters.

Parameter Function Notes

Command A MAINVIEW for CICS service request,| No quotes are required around this
referred to in format descriptions in the | operand.

MAINVIEW for CICS PERFORMANCE
MANAGER User Guide

Chapter 12. Using the IMFEXEC Statemen297

CICS QUERY

Example

This section contains an example using the IMFEXEC CICS QUERY command statement. A brief discussion follows
the example.

/* REXX */

"IMFEXEC CICS QUERY SUBPOOL™

/> DSA PERCENTAGE IS NOW IN MSG #2, COLUMNS 14-16 */
"IMFEXEC VGET LINE2 LOCAL"

DSAPERC = SUBSTR(LINE2,14,2)

IF DSAPERC < 50 THEN CALL LOKAY

The above example command shows an EXEC that interprets the DSA utilization percentage. This could be used to
influence decisions made within an EXEC that is invoked when message FT041S (task using excessive storage) is
issued.

To page through several MAINVIEW for CICS displays, supply a parameter to the second and subsequent
information of a command. This parameter should specify the last item on the previous page; for example, when
using the TRAN display, invoke the TRAN display on the second iteration with the name of the last transaction
displayed on the panel you have already processed (IMFEXEC QUERY TRAN xxxx). MAINVIEW for CICS begins
the next display with that transaction.

298 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

CICS RECOVERDB

CICS RECOVERDB

This command prepares a database for recovery by preventing reads and updates so a recovery utility can be run in
another region.

Command Parameters

CICS RECOVERDB Database name

Note: BBI-SS PAS to CICS communication must be active.

The following table describes the parameters.

Parameter Function Notes

Database The name of the database identified in thé- to 8-characters alphanumeric.
Data Management Block Directory (DMB|

Example

This example command inhibits online updates to the database STDIDBP.

/* REXX */
"IMFEXEC CICS RECOVERDB STDIDBP*

Chapter 12. Using the IMFEXEC Statemen299

CICS RELEASE

CICS RELEASE

This command releases VTAM terminals from CICS.

Command Parameters
CICS RELEASE TERMINAL
Terminal ID

Note: BBI-SS PAS to CICS communication must be active.

The following table describes the parameters.

Parameter Function

Notes

Terminal identifier ID of the terminal to be released

1- to 4-characters alphanumeric.

If you use generics for the terminal ID
name, a maximum of only 200 discrete
commands are executed.

Example

This example command releases all terminals beginning with LM.

/* REXX */
"IMFEXEC CICS RELEASE TERMINAL LM*"

300 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

CICS SPURGE

CICS SPURGE

This command dynamically changes the SPURGE value for a CICS transaction.

Command Parameters
CICS SPURGE Tranid
[YES|NO]

Note: For CICS/ESA, the stall purge mechanism no longer exists. SPURGE now indicates whether a transaction is
system purgeable. If the transaction definition specifies SPURGE=NO, the transaction is protected from
deadlock timeout purge and purge requests (but not from force purge requests) issued by applications or the
master terminal.

The following table describes the parameters.

Parameter Function Notes
Tranid Transaction to affect
Status YES/NO Specifying YES turns the SPURGE flag jon.

Specifying NO turns the SPURGE flag ofr.

Example

This example command sets the SPURGE flag for transaction RT17 to on.

/* REXX */
"IMFEXEC CICS SPURGE RT17 YES"

Chapter 12. Using the IMFEXEC Statemen801

CICS STARTDB

CICS STARTDB

This command activates a database, making it available for processing.

Command Parameters

CICS STARTDB Database name

Note: BBI-SS PAS to CICS communication must be active.

The following table describes the parameters.

Parameter Function Notes

Database Database identified in the Data 1- to 8-character name of the database.
Management Block Directory (DMB)

Example

This example command activates a database with the name STDCDBP.

/* REXX */
"IMFEXEC CICS STARTDB STDCDBP"

302 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

CICS STOPDB

CICS STOPDB

This command deactivates a database, making it unavailable for processing.

Command Parameters

CICS STOPDB Database name

Note: BBI-SS PAS to CICS communication must be active.

The following table describes the parameters.

Parameter Function Notes

Database Database identified in the Data 1- to 8-character name of the database.
Management Block Directory (DMB)

Example

This example deactivates the database STDCX2P.

/* REXX */
"IMFEXEC CICS STOPDB STDCX2P'

Chapter 12. Using the IMFEXEC Statemen803

CICSTRAN

CICSTRAN

This command invokes a CICS transaction.

Command Parameters
CICSTRAN Tran
[Parameters']

The following table describes the parameters.

Parameter Function Notes

Tran The ID of the transaction to invoke 1- to 4-alphanumeric characters.
The transaction must be capable of running the
terminal unattached. For example, use EXEC Cl
RETRIEVE instead of EXEC CICS RECEIVE.

Parameters Any parameters necessary for thiMaximum length is 80 characters.

transaction
Example

This example command deactivates BBI-SS PAS to CICS communications.

/* REXX */

"IMFEXEC CICSTRAN FST2 "QOFF""

304 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

CMD

CMD

The IMFEXEC CMD command performs a variety of functions depending on the parameters supplied. It may be
used to:

Issue a BBI control command
Issue an MVS command
Issue an IMS command

Issue a JES3 command

Command types are recognized by their command characters (the first character of the command). A missing or
invalid command character causes the command to be issued and treated like an MVS command.

There are two major command formats: commands that return a full response and those that do not (or do so in a
limited fashion). In general, enclosing the command argument in quotes indicates that a response should be returned
to the EXEC.

The different versions of IMFEXEC CMD are:

CMD - Issue BBI command without response, page 306

CMD - Issue BBI command with response, page 307

CMD - Issue MVS command with response (and with X-MCS consoles), page 310
CMD - Issue IMS command without response, page 315

CMD - Issue IMS command with response, page 317

Chapter 12. Using the IMFEXEC Statemen805

CMD

CMD (Issue BBI Command without Response)

This command issues a BBI control command.

Command Parameters
CMD .Command
[pl ... pn]

The following table describes the parameters.

Parameter Function Notes
Command The command or command abbreviation| A period (.) identifies the command as a
and and any parameters BBI control command. See th¢AINVIEW

Common Customization Guidier a full

parameters
description of the BBI control commands

Condition codes are listed in the following table.

Value Description
0 This command format always returns a zero condition code.
Example

This example command switches the active BBI-SS PAS Journal log data set to an alternate data set. The command
and any response are written to the BBI-SS PAS Journal log, which is viewed from LOG DISPLAY.

/* REXX */
"IMFEXEC CMD .1 JOURNAL"

306 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

CMD (Issue BBI Command with Response)

CMD

This command format issues BBI commands. A response is returned to the issuing EXEC.

Command

Parameters

CMD

".Command [pl ... pn]'
TYPE(BBI)

ALL

ALLWAIT(1 - 9999)

Command output is placed in LOCAL variables LINE1 through LINEnnnn, where nnnn is the last line (variable
IMFNOL contains the value of nnnn).

The following table describes the parameters.

Parameter Function Notes

.Command The command or command abbreviation| The period (.) identifies the command as[a

and and any parameters BBI control command. See ti@AINVIEW

parameters Common Customization Guidier a full
description of the BBI control commands

TYPE Command response designator Must be BBI.

If this is not specified, the command will be
issued as an MVS command.

ALL Retrieve all responses This parameter causes all other criterid to
be ignored and to wait for further responsges
as long as responses continue to arrive
within half-second intervals.

Chapter 12. Using the IMFEXEC Statemen807

CMD

Parameter

Function

Notes

ALLWAIT

Specify an interval to wait from 1 to 9999
seconds.

ALLWAIT allows CMD processing to

continue waiting in intervals (specified in
seconds) until no responses are received
within an interval of that length.

If at least one response is received in that
interval, processing continues for an
additional interval. This processing is
repeated until no responses are received
within an interval, which may result in
added wait time. Therefore small interval
of 1-5 are recommended.

oY

Example of processing:

Sample commandIMFEXEC CMD
"cmd_text™ TYPE(BBI) ALL
ALLWAIT(3)

Processing waits 3 seconds as specified in
ALLWAIT and then checks to see if any
responses were received. If none, the

command is terminated. If a response was
received, processing waits an additional 8
seconds and checks again.

This action is repeated until no responses
are recieved within the specified interval.

ALLWAIT is only valid when ALL is
specified.

Condition codes are listed in the following table.

Value Description

0 Command response returned before WAIT time expired
4 Command partially returned after WAIT time expires

8 No reply has been received

308 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

CMD

Example

This example EXEC sends the BBI .D A command output to a TSO user ID.

/* REXX */
"IMFEXEC CMD *.D A" TYPE(BBI) ALL™
IF IMFCC < 5 THEN DO
DO N = 1 TO IMFNOL
"IMFEXEC VGET LINE"N "LOCAL"
"IMFEXEC SEND "LINE™N VALUE(C"LINE*N) " USER(BBI1)"
END
END

Chapter 12. Using the IMFEXEC Statemen809

CMD

| CMD (MVS Version with Response through X-MCS Consoles)

This command issues an MVS command using X-MCS consoles. A response is returned to the issuing EXEC.

Command Parameters

CMD '‘#Command'

[RESPONSE(*|Message ID)]
[COUNTILINES(1]n)]
[WAIT(30|n)]
[CONSOLE(N)|INAME (XXXXXXXX)]
[ALL]

[ALLWAIT(1 - 9999)]
[MIGID(yes|no)]

[DEBUG]

The console choice is automatic and transparent. Command output is placed in LOCAL variables LINE1 through
LINEnnnn, where nnnn is the last line (variable IMFNOL contains the value of nnnn). These variables must be
retrieved using the VGET command before they can be used.

The number of X-MCS consoles allocated controls the number of commands that can be processed concurrently. If
all consoles are being used and an EXEC issues a command, the EXEC waits until another EXEC releases the
console.

In addition, prior to MVS Version 4, all consoles have only a 1-byte console ID. Beginning with MVS Version 4, all
consoles (subsystem, MCS, and X-MCS) have a 4-byte console ID and an 8-byte console name. AutoOPERATOR
creates all X-MCS console names using the format:

SSIDnnnNn
where:
SSID Is the BBI-SS PAS identifier name

nnnn Is a number from 0 to the total number of X-MCS consoles created

Note: You must make sure that no other application uses these console names.

Some consoles may have a 1-byte console ID in addition to the new 4-byte console ID. For example, MCS consoles
(defined in the CONSOLxx member of SYS1.PARMLIB) continue to have a 1-byte console ID in addition to the 4-
byte console ID and 8-byte console name. However, X-MCS consoles usually do not have a 1-byte console ID.

This means that applications that interface with consoles specified in the CONSOLxx member of SYS1.PARMLIB
do not have to be updated to understand 4-byte console IDs.

Applications that will interface with X-MCS consoles need to be updated to understand 4-byte console IDs. You may
have some applicatiorisat do not yet understand 4-byte console IDSTo remain compatible with these

applications, MVS allows some X-MCS consoles to have a 1-byte migration ID (MIGID) specified. Therefore, X-
MCS consoles that have a MIGID can interface with applications that have not yet been updated.

In addition, within a sysplex, MVS limits the number of X-MCS consoles with MIGIDs. For this reason,

AutoOPERATOR does not request a MIGID for all X-MCS consoles it creates. Therefore, you must determine which
EXECs using the IMFEXEC CMD statement will need to specify a MIGID.

310 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

CMD

Refer to theMAINVIEW AutoOPERATOR Customization Guiolemore information about MVS console
considerations and how X-MCS consoles are allocated with and without MIGIDs.

Command

Parameters

Notes

‘#Command’

MVS command to be issued

The maximum length of an MVS
command is 126 characters.

To prevent the BBI-SS PAS from
interpreting the MVS command comman
as a BBI command, make sure you prefi

Prefixing the command with a # causes
AutoOPERATOR to treat the command &
an MVS command. The # is stripped off
the command before it is issued. If the

command you want to issue begins with
#, make sure you prefix the command wi
2 pound signs: ‘##command’.

the MVS command with a pound sign (#).

La)

> 9

RESPONSE

Message ID(s) expected for response

The default is **’, which means any
message. You can specify up to 8 messa
IDs, separated by commas, each up to 1
characters long. Wildcards are allowed.

If RESPONSE(*) is specified, the EXEC
picks up all messages from the selected
MVS console. If there are messages tha
are responses to previous commands on
same MVS console, it is recommended th
RESPONSE is coded for the MSG ID.

COUNT]ILINES

Number of response lines to be retrieve

) Default is 1. You may specify from O
through 9999. A Multi Line WTO
(MLWTO) is counted as one line (even
though it may be composed of many ling
as in some VTAM command responses).

If COUNT(0) is explicitly coded, it meang
no response is needed. This format is
recommended over using the IMFEXEC
CMD without response statement.

WAIT

Length of time to wait for all response line
to arrive

5 Default is 30 seconds. You may specify
from 5 through 999 seconds.

CONSOLE

A 1-byte console ID to issue the commandhis is needed only under unusual

from

conditions and you must have a valid,
active MVS console available or no
response can be obtained.

ALL

Retrieve all responses

as long as responses continue to arrive
within half-second intervals.

\ge

the
at

This parameter causes all other criteria to
be ignored and to wait for further responses

Chapter 12. Using the IMFEXEC Statemen811

CMD

Command

Parameters

Notes

ALLWAIT

Specify an interval to wait from 1 to 9999
seconds.

ALLWAIT allows CMD processing to

continue waiting in intervals (specified in
seconds) until no responses are received
within an interval of that length.

If at least one response is received in that
interval, processing continues for an
additional interval. This processing is
repeated until no responses are received
within an interval, which may result in
added wait time. Therefore small intervals
of 1-5 are recommended.

Example of processing:
Sample commandIMFEXEC CMD

"cmd_text” TYPE(BBI) ALL
ALLWAIT(3)

Processing waits 3 seconds as specified
ALLWAIT and then checks to see if any
responses were received. If none, the
command is terminated. If a response was
received, processing waits an additional 3
seconds and checks again.

n

This action is repeated until no responseis
are recieved within the specified interval.

ALLWAIT is only valid when ALL is
specified.

312 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

CMD

Command

Parameters

Notes

NAME

A valid MVS console name

Use this parameter if the command mus
issued from a specific MVS console nam

When command responses are expected,

one of three things can happen (dependi

on the state of the console of the consol¢

name you specified):

* An active console identified to
AutoOPERATOR will be used.

» No X-MCS consoles are defined so
one will be created and it will not have
a MIGID. When the command ends,
the console is deactivated.

* Aninactive X-MCS console is

activated and used for the command|

 When the command ends, the consd
is deactivated.

If command responses are not required
(COUNT=0), any valid MVS console
(defined or undefined, active or inactive)
may be specified.

The NAME and CONSOLE parameters
cannot be used together.

t be
e.

ng

D

le

MIGID

Specify YES or NO to use an X-MCS
console with a MIGID.

MAINVIEW AutoOPERATOR default is
NO. If you specify YES, an X-MCS
console with a MIGID is used.

DEBUG

Issues debugging messages

Used for problem diagnosis.

The IMFEXEC CMD with response results in some variables being set in addition to IMFCC. IMFCCON contains
the 1-byte console ID or migration ID (decimal). If the Extended MCS console does not have a migration 1D, the
variable IMFCCON contains 255. The variable IMFCNAME contains the console name.

The variable IMFRC contains the return code given by the MVS MGCRE macro (which is used to issue the
command). This return code is meaningful only when issuing the MVS START command. Do not inspect this
variable if you are not issuing the MVS START command. When you issue the MVS START command and if
IMFRC is zero, the variable IMFCASID contains the ASID (decimal) of the started address space and IMFCSTKN
contains the STOKEN (16 hexadecimal characters).

Value Description

0 Command responded within WAIT time

4 Command partially responded within WAIT time

8 No reply has been received, WAIT time has expired

Chapter 12. Using the IMFEXEC Statemen813

CMD

Value Description

16 Command text is greater than 121 characters

20 Severe error: see short message text for more information
Examples

This section contains two examples using the IMFEXEC CMD command statement. A brief discussion follows each
example.

Example 1

/* REXX */

PARSE ARG EXNAME .

"IMFEXEC MSG " ."EXNAME "EID="IMFEID"""

"IMFEXEC CMD "#D NET,CDRMS® RESPONSE(IST3501)"
"IMFEXEC MSG *."EXNAME "IMFNOL="IMFNOL "‘CC="IMFCC"""

DO I=1 TO IMFNOL
"IMFEXEC VGET LINE"I "LOCAL"
"IMFEXEC MSG *®."EXNAME "LINE"1 "LENGTH="LENGTH(VALUE("LINE®I1))"""
"IMFEXEC MSG *."EXNAME VALUE(TLINE®I)™"*""

END

"IMFEXEC MSG " ."EXNAME "EID="IMFEID "ENDED""

This EXEC demonstrates how to issue a VTAM command with response. Note, VTAM typically returns its responses
as a Multi-line WTO (MLWTO); therefore, the COUNT parameter should be set to one (the default).

Example 2

/* REXX */

PARSE ARG EXNAME .

"IMFEXEC MSG *."EXNAME "EID="IMFEID"""

"IMFEXEC CMD "#$DJ1-999,L=Z" RESPONSE($HASP636)"
"IMFEXEC MSG *"."EXNAME " IMFNOL="IMFNOL "'CC="IMFCC™"""

DO I=1 TO IMFNOL
"IMFEXEC VGET LINE"™I "LOCAL™
"IMFEXEC MSG *."EXNAME "LINE™1 "LENGTH="LENGTH(VALUE(C"LINE"I1))"""
"IMFEXEC MSG *."EXNAME VALUE("LINE®I)"*="

END

"IMFEXEC MSG " ."EXNAME "EID="IMFEID "ENDED""

This REXX EXEC demonstrates how to issue a JES2 command with response. Note that requesting JES2 to return its
responses as a Multi-line WTO (MLWTO) through the L=Z option provides a more reliable means to make sure that
you receive all the response lines. Since JES2 (in this case) returns one MLWTO ($HASP636, even though it
comprises many lines), the COUNT parameter should be set to one (the default).

314 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

CMD

CMD (Issue IMS Command without Response)

This command format issues IMS commands. Only minimal response is returned.

Generic resource names can be specified in the commands using wildcard characters. The plus sign (+) can be used

to represent any one character, while the asterisk (*) can be used to represent any number of characters.

Command

Parameters

CMD

/IMS command

The response segment is returned in the standard CLIST variable SYSDVAL, which can be parsed using the
READDVAL command. READDVAL functions the same way as in a TSO CLIST.

Note: Command response is not returned when the /MODIFY or /IMSVERIFY command is issued.

Parameters

Function

/IMS command

The IMS command to be issued

Condition codes are listed in the following table.

Value Description

0 Command issued and first segment of response returned in SYSDVAL.

4 Generic command format resulted in multiple IMS commands. SYSDVAL contains
response to first command.

8 Command timeout, no response returned (Msg IM9215W issued).

12 One of the following:
e Target IMS not available
 The messagd,01317W Command Not Issued, No Matching Resource

Found is returned as a response when there are no matching resources found,
Examples

This section contains examples using the IMFEXEC CMD command statement. A brief discussion follows each

example.

Example 1 - Issuing generic commands

/* REXX */

"IMFEXEC CMD /STA DATABASE BE3ORDER™
"IMFEXEC CMD /STA DATABASE BE3*"

"IMFEXEC CMD /STA DATABASE +++ORDER™
"IMFEXEC CMD /STA DATABASE BE+ORDER™

In this example, AutoOPERATOR issues generic /STA DATABASE commands to start all databases whose names

begin with BE3 or contain the characters ORDER in positions 4-8.

Chapter 12. Using the IMFEXEC Statemen815

CMD

The * cannot be followed by any other characters and only one can be used in a string. You can use a + and an *
together in a generic IMS resource command but the * must be the last character

Example 2 - Retrieving &SYSDVAL

/* REXX */
"IMFEXEC CMD /STA TRAN TE4COCNG"
/* SYSDVAL = DFS058 COMMAND COMPLETED EXCEPT FOR TE4COCNG */
READDVAL MSGID P1 P2 P3 P4 P5
IF P3 = "EXCEPT®" THEN DO
commands
END

Starts an IMS transaction and verifies that the start command worked. This method of issuing an IMS command (no
quotation marks) returns only the first response segment to the EXEC. Additional response segments are not available
to the EXEC. See the description of IMS command with response in the next section for information about accessing
all response segments in an EXEC.

316 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

CMD

CMD (Issue IMS Command with Response)

This command format issues IMS commands. A response is returned to the issuing EXEC.

Generic resource names can be specified in the commands using wildcard characters. The plus sign (+) can be used to
represent any one character, while the asterisk (*) can be used to represent any number of characters. Only one by
any other characters. Theand in a string.

Note: ~ Generic names are not supported for the ?RMxxxxxx DBRC (Database Recovery Control) commands.

Command Parameters

CMD '/IMS command'
[COUNT(1]n)]
TYPE(IMS)
DBCTL(dbctltgt)
[WAIT(30|n)]

ALL

ALLWAIT(1 - 9999)

The response segment is returned in the local variable pool in variable LINE1 through LINEnnnn. The number of
lines returned is available in IMFNOL.

Note: ~Command response is not returned when the /MODIFY or /IMSVERIFY command is issued.

Parameters Function Notes
'/IMS or DBCTL The command to be issued The maximum length of the IMS command
command' is 252 bytes.

Note: The / (slash) designates this
command format as an IMS or
DBCTL command. The quotes
indicate that a response is to be

returned.
COUNT The maximum number of response Numeric value in the range 1-9999. This
segments parameter is required.

When the response to acommand is an IMS
multi-segment message, the IMFEXEC
CMD TYPE(IMS) stops waiting when any
of the following conditions is met:

* WAIT time has expired.

* COUNT value has been met.

* IMS sent the last segment of a multi-
segment message.

TYPE Command response designator Must be IMS. This parameter is required.

If this is not specified, the command will b
issued as an MVS command.

1%

Chapter 12. Using the IMFEXEC Statemen817

CMD

Parameters

Function

Notes

DBCTL

DBCTL target address space name

Must be used for DBCTL-only addreq
spaces. Must not be used for IMS and
DBCTL address spaces.

(7]

WAIT

The maximum amount of time, in second
to wait for a command response

5,Numeric value in the range 5-9999.

When the response to acommand is an IMS
multi-segment message, the IMFEXEC
CMD TYPE(IMS) stops waiting when any
of the following conditions is met:

* WAIT time has expired.

» COUNT value has been met.

» IMS sent the last segment of a multi-
segment message.

ALL

Retrieve all responses

This parameter causes all other criterid to
be ignored and to wait for further responsges
as long as responses continue to arrive
within half-second intervals.

ALLWAIT

Specify an interval to wait from 1 to 9999
seconds.

ALLWAIT allows CMD processing to

continue waiting in intervals (specified in
seconds) until no responses are received
within an interval of that length.

If at least one response is received in that
interval, processing continues for an
additional interval. This processing is
repeated until no responses are received
within an interval, which may result in
added wait time. Therefore small intervals
of 1-5 are recommended.

Example of processing:

Sample commandMFEXEC CMD
"cmd_text" TYPE(BBI) ALL
ALLWAIT(3) IMFEXEC CMD

Processing waits 3 seconds as specified fin
ALLWAIT and then checks to see if any
responses were received. If none, the

command is terminated. If a response was
received, processing waits an additional 8
seconds and checks again.

This action is repeated until no responses
are received within the specified interval.

ALLWAIT is only valid when ALL is
specified.

318 MAINVIEW AutoOPERATOR Advanced Automation Guide for REXX EXECs

CMD

IMS commands are issued by way of the IMS internal interface, which returns the response to the issuing